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Fire is an integral ecosystem process and a central driver of global vegetation dynamics. Yet at the 

same time, humans use fire for an extremely large range of purposes, spanning disposal of 

agricultural residues to religious ceremonies. Anthropogenic fire management strategies are 

similarly diverse, ranging from preventative strategies such as indigenous patch burning to fire 

exclusion through industrial fire extinguishing. 

Given the diversity of human-fire interactions, it is perhaps not surprising that the first Fire Model 

Intercomparison Project (FIREMIP) found simplistic representations of humans are a substantial 

shortcoming in current global fire models. Underpinning this inadequacy in global fire modelling are 

two key research challenges. The first is the lack of a systematic empirical basis from which to derive 

improved representations of people in global models. The second challenge is the current lack of 

appropriate modelling frameworks through which to capture and project anthropogenic fire impacts 

in a way which allows ready integration with global-scale biophysical models.  

This thesis addresses both these key challenges in order to progress knowledge of how humans 

shape global fire regimes. It presents the construction of DAFI – the Database of Anthropogenic Fire 

Impacts – and the use of DAFI to construct WHAM! – the Wildfire Human Agency Model. DAFI is the 

product of a global meta-analysis of academic and grey literature capturing human-fire interactions. 

WHAM! is a novel, global, and spatial model that captures the socio-ecological drivers of 

anthropogenic fire use and management. An offline coupling of WHAM! with the JULES-INFERNO 

fire-enabled dynamic global vegetation model, and future runs of WHAM! for the Shared 

Socioeconomic Pathways are both presented. 

Therefore, through development of WHAM! this thesis presents the first global projection of 

managed anthropogenic fire. Furthermore, through integration of WHAM! and JULES-INFERNO, this 

thesis describes the first time that representation of managed anthropogenic fire has been 

integrated into a global process-based model of fire on Earth. This innovation allows substantial new 

insights into the spatial heterogeneity of human influences on fire regimes and how divergent such 

influences could be under contrasting future scenarios. Intermediate steps towards this 

achievement included: identification of seven central modes of anthropogenic fire use as the basis 

for global-scale modelling, development of a novel means of projecting global regimes of human fire 

use, and new projections of socio-economic indicators for the Shared Socioeconomic Pathways. 

Overall, this thesis represents a meaningful advance in global fire science and, more broadly, 

modelling of human-Earth system interactions across large spatial extents.  

Abstract 
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Introduction 
 

1.1 Thesis aims and objectives 
The research conducted in this thesis was inspired by findings from the first Fire Model 

Intercomparison Project (FIREMIP; Hantson et al., 2016). The FIREMIP found that simplistic 

representations of humans were a substantial shortcoming in the fire modules of dynamic global 

vegetation models (DGVMs) - with little agreement between models on the direction or magnitude 

of human influence on burned area (Teckentrup et al., 2019). Moreover, discussion of FIREMIP 

outcomes argued addressing such shortcomings represented a substantial research challenge. 

Commenting on the work required to develop a process-based representation of human-fire 

interactions in global-scale models, Teckentrup et al., (2019) suggest this “will likely remain a long-

term challenge and requires the synthesis of knowledge from various research fields” (p3898). 

Similarly, Forkel et al., (2019) argue an underlying challenge is the lack of “a solid and large-scale 

empirical basis that would allow researchers to derive alternative formulations on human–fire 

interactions for fire-enabled DGVMs” (p70). 

Addressing these issues is therefore the central overarching rationale of the research presented in 

this thesis. To deliver on this ambition, three aims were identified, which in turn inform three key 

deliverable objectives. By delivering against these objectives, the research described in this thesis 

aims to make a significant contribution to understanding of global fire regimes, and the wider 

development of global-scale behavioural models of socio-environmental systems (SES). The three 

aims and accompanying objectives of this thesis are: 

 

Aims 

1) Synthesise available knowledge of human-fire interactions globally, assess the state of 

understanding and identify knowledge gaps; 

2) Explore how behavioural modelling may provide the basis for improved representations of 

anthropogenic fire impacts in global-scale process-based models; 

3) Quantify the influence of human behaviours on global wildfire regimes and explore how such 

behaviours may evolve under future environmental and socio-economic change. 

Chapter 1 
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Objectives  

1) Conduct a global meta-analysis of studies of anthropogenic impacts on wildfire, spanning the 

breadth of the academic disciplines and grey literature; 

2) Drawing on this evidence base, develop the first global behavioural model of anthropogenic fire 

impacts and integrate this with a dynamic global vegetation model; 

3) Use this coupled model to explore the socio-ecological drivers of present-day fire regimes, and 

run the behavioural model under contrasting future scenarios of socio-economic development 

and environmental change.  

 

1.2 Thesis structure 
This thesis is structured as a literature review, four chapters of original research, and a final 

discussion chapter. Table 1.1 provides a brief summary of each chapter’s contents and associated 

peer-reviewed publications (see Section 1.2). Broadly, chapter three delivers against aim and 

objective 1, chapters four and five deliver aim and objective 2, and chapter six delivers aim and 

objective 3.  

Chapter two, a literature review, describes the current state of knowledge surrounding human-fire 

interactions. This begins with a review of findings from the first Fire Model Intercomparison Project 

(FIREMIP) and ‘top-down’ Earth observation based empirical work. It then describes advances in 

understanding of human-fire interactions from local and landscape-scale field studies. Chapter two 

concludes by describing how and why agent-based modelling may provide methods to improve 

representation of anthropogenic fire in global-scale models. 

Chapter three presents DAFI – the database of anthropogenic fire impacts. DAFI is the product of a 

literature meta-analysis spanning 514 academic papers, government and NGO reports. DAFI was 

developed in response to the need identified in FIREMIP for a global-scale dataset to inform 

improved representation of human impacts on fire regimes in dynamic global vegetation models 

(DGVMs). 

Chapter four is the first of two chapters presenting WHAM! – the Wildfire Human Agency Model. 

This chapter presents the land use module of WHAM!, specifically the distribution of land-fire 

systems (LFS). These LFS are closely related to WHAM!’s distribution of agent functional types (AFTs) 

and so are fundamental to overall model function. The LFS distribution is evaluated with the Human 

Appropriation of Net Primary Production – an independent measure of land use intensity.  
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Table 1.1: Summary of thesis chapters, their relationship to research aims & associated 

peer-reviewed publications 

 

Chapter 
Research 
aim(s) 

Content 
(Section 1.1) 

Associated publications 
(Section 1.2) 

2 All Literature review Ford et al., 2021 

3 1 
DAFI: a global database of anthropogenic fire 
impacts 

Millington et al., 2022;  
Smith et al., 2022 

4 2 
WHAM! land use engine: the global distribution 
of land-fire systems 

Perkins et al., 2022 

5 2 
WHAM! fire module: parameterisation & 
evaluation 

Perkins et al., (in submission) 

6 3 
WHAM! applications: offline coupling with 
INFERNO & 2100 model runs for SSPs 1, 3 & 5. 

N/A 

7 All Discussion N/A 

 

 

Chapter five presents the fire module of WHAM!. This begins with the use of the underlying LFS 

distribution to determine a set of agent functional types (AFTs) and their parameterisation for 

managed fire use. Building on this, a set of landscape level meta-processes are described. These 

span fire control measures, fire extinguishing (‘suppression’) intensity and fire use as a weapon (i.e. 

arson). WHAM! outputs for crop residue burning are evaluated independently against the GFED5 

cropland fires product (Hall et al., 2023), whilst other WHAM! managed fire outputs are evaluated 

against unseen case-study data.  

Chapter six presents two applications of WHAM!. The first of these is an offline coupling of WHAM! 

with INFERNO, the fire module of the JULES DGVM. This model ensemble is used to explore the 

socio-ecological dynamics of fire regimes of the recent past. Then, WHAM! is run for the Shared 

Socioeconomic Pathways (SSPs 1, 3 & 5). This allows possible futures of human fire use and 

management to be explored under contrasting socio-economic and environmental conditions.  

Chapter seven, a discussion, summarises findings and lessons learned from the work presented in 

chapters three to six. It does this first for global understanding and modelling of human-fire 

interactions, before considering wider implications for modelling of global socio-environmental 

systems (SES).  
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1.3 A note on associated publications 
This thesis contains peer-reviewed publications, the detail of which is set out by chapter below. The 

content of Chapter 4 comes directly from a published journal article. Chapters 2 & 3 contain text, 

figures and tables previously published in related publications. All such content was the original 

contribution of the candidate. Where text, figures or tables have been previously published, this is 

marked in footnotes. Finally, a manuscript presenting content from Chapter 5 will shortly be 

submitted and is likely to be available as a pre-print at the time of oral examination. 

 

Chapter 2 

• Some of the content in the literature review became the candidate’s original contribution to 

the wider review of the modelling of human-fire interactions conducted by Ford et al., 

(2021; including Perkins). This content is marked as appropriate in footnotes.  

• Some portions of the literature review describe the need for a consistent dataset for global-

scale modelling of human-fire interactions. Such a dataset was delivered during this PhD 

thesis, and is presented in Millington et al., (2022; including Perkins). Data from this paper 

were used in the analysis of Smith et al., (2022; including Perkins).  

 

Chapter 3 

• The database and analysis presented in this chapter formed the basis of Millington et al., 

(2022). Owing to multiple deadlines on concurrent journal articles (i.e. Perkins et al., 2022 – 

Chapter 4), the PhD supervisor lead on delivery of the published manuscript. The content in 

this thesis chapter is all the candidate’s original work, having originally been composed for 

the candidate’s MPhil to PhD upgrade report in 2021. Content presented that also appears 

in Millington et al., (2022) is marked in footnotes. 

• As noted above, data from the database presented in this chapter also contributed to the 

study of Smith et al., (2022). 
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Chapter 4 

• This chapter was previously published as Perkins et al., (2022). 

 

Chapter 5 

• A version of this chapter will shortly be submitted to Geoscientific Model Development as 

Perkins et al., (in submission); this related manuscript is likely to be available as a pre-print 

at the time of oral examination. 

 

1.4 References of associated publications 
Ford, A., Harrison, S., Kountouris, Y., Millington, J., Mistry, J., Perkins, O., Rabin, S., Rein, G., 

Shreckenberg, K., Smith, C., Smith, T., & Yadav, K. (2021). Modelling Human-Fire Interactions: 

Combining Alternative Perspectives and Approaches, Frontiers in Environmental Science, 9. doi: 

10.3389/fenvs.2021.649835 

Millington, J.D.A., Perkins, O., & Smith, C. (2022). Human fire use and management: A global 

database of anthropogenic fire impacts for modelling, Fire, 5(4), 87. doi: 10.3390/fire5040087 

Perkins, O., Matej, S., Erb, K-H., & Millington, J.D.A. (2022). Towards a global behavioural model of 

anthropogenic fire: The spatio-temporal distribution of land-fire systems, Socio-environmental 

Systems Modelling, 4. doi: 10.18174/sesmo.18130 

Perkins, O., Kasoar, M., Voulgarakis, A., Smith, C., Mistry, J., & Millington, J.D.A. (In submission). A 

global behavioural model of human fire use and management. Geoscientific Model Development. 

Smith, C., Perkins, O., & Mistry, J. (2022). Global decline in subsistence-oriented and smallholder fire 

use, Nature Sustainability, 5, 542-551. doi: 10.1038/s41893-022-00867-y 
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Literature review 
 

2.1 Introduction 
Fire is a fundamental earth-system process and a key driver of global vegetation dynamics (Bowman 

2005; Pausas and Keeley 2009; Keeley et al., 2011). At the same time, human fire use is 

extraordinarily diverse, with anthropogenic fire providing a simple fertiliser in shifting cultivation 

(Pingali et al., 1987; Carmenta et al., 2013), a means to clear agricultural and forestry residues 

(Korontzi et al., 2006), and to deter pests and regenerate forage in livestock farming (Kull 2003; 

Cano-Crespo et al., 2015). However, fire also poses significant hazard to humans, causing property 

damage and loss of life both directly, and indirectly through harmful aerosol emissions (Johnston et 

al., 2012; Molina-Terrén et al., 2019).  

As a result of human activity, global fire regimes are changing profoundly (Rogers et al., 2020). 

Climate change is causing fires to become widespread in boreal ecosystems that were previously 

largely fire-independent (Feurdean et al., 2020). A combination of climate change and the 

unintended consequences of industrial fire suppression (Silva et al., 2010) have given rise to the era 

of the ‘mega-fire’, leading to catastrophic damage in areas including North-eastern China (Fan et al., 

2017), California (Keeley and Syphard 2019) and Southern Australia (Adams et al., 2020). Yet at the 

same time, remote sensing data from the Moderate Resolution Imaging Spectrometer (MODIS) 

suggest annual global burned area is decreasing (Andela et al., 2017), with plausible explanations 

including anthropogenic land use change (Rabin et al., 2015), changes in rainfall patterns (Zubkova et 

al., 2019), and the CO2 fertilisation effect on vegetation (Forkel et al., 2019). However, the 

underlying coarse (1km2) spatial resolution of MODIS’ data itself may mean that rather than 

reducing burned area, anthropogenic influence is merely fragmenting fire regimes into smaller fires 

that are undetectable in satellite-derived global burned area observations (Fornacca et al., 2017; 

Zhang et al., 2018; Zubkova et al., 2023).  

This complex picture highlights the multifaceted nature of anthropogenic impacts on fire regimes. 

Not only are humans an important source of fires and intentional fire suppression, they also alter 

fire regimes by fragmenting landscapes (Archibald et al., 2011) and altering fuel loads through 

grazing and logging (Cochrane 2009a; Archibald 2016). For these reasons, Anthropocene wildfire 

regimes are best understood as a coupled socio-ecological system (Pausas and Keeley, 2019; Kelley 

et al., 2019), in which people are the largest driver of changes to the frequency, intensity and extent 

of fire (Rogers et al., 2020).  

Chapter 2 

https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2005GB002529
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However, at the global scale, fire is most frequently modelled as a component of dynamic global 

vegetation models (DGVMs) – which are process-based biophysical models that form the terrestrial 

biosphere component of general circulation models (GCMs). As such, DGVMs’ emphasis has 

historically been on representing biophysical processes, with anthropogenic influences considered 

primarily as external forcings (Foley et al., 2000; Quillet et al., 2010). As a result, the recent Fire 

Model Inter-comparison Project (FireMIP; Hantson et al., 2016) revealed substantial limitations in, 

and disagreements between, the current generation of Dynamic Global Vegetation Models (DGVMs) 

regarding the anthropogenic influence on fire regimes (Teckentrup et al., 2019). The lack of an 

holistic approach is symptomatic of a broader need for interdisciplinary approaches to advance 

understanding of fire ecology (Coughlan and Petty 2012).  

Therefore, this review provides an overview of how human systems are represented in the fire 

modules of DGVMs, before exploring the wider state of understanding of human-fire interactions. 

Two principal limitations in current representations of anthropogenic fire in DGVMs are highlighted: 

a lack of representation of the underlying processes that drive human fire impacts, and an inability 

to capture interactions between human and biophysical drivers of global fire regimes. Methods from 

agent-based modelling (ABM) provide opportunities to address these limitations. Therefore, in the 

next section, agent-based methods are assessed as a means of addressing these key shortcomings in 

the representation of human systems within global fire models.  

 

2.2 Current approaches to modelling and understanding global fire regimes 
 

2.2.1 Representations of anthropogenic fire impacts in DGVMs 
The recently concluded FIREMIP made wide-ranging recommendations for the improvement of the 

representation of fire in DGVMs (Hantson et al., 2020), including improvements to representations 

of fuel load based on fire return intervals and the need for higher-resolution calibration data (Forkel 

et al., 2019). However, a resounding and consistent conclusion was that representations of 

anthropogenic influences on fire are currently insufficient (Teckentrup et al., 2019). Representations 

of people were both the greatest source of disagreement between models, but also between models 

and satellite observations (Teckentrup et al., 2019; Forkel et al., 2019). Furthermore, when assessed 

on their ability to reproduce observed burned area patterns from global remote sensing fire product, 

those models which had more detailed representation of anthropogenic influences performed best 

(Hantson et al., 2020).  
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The FIREMIP highlighted fundamental issues in DGVMs’ representation of humans’ direct and 

indirect influences on fire regimes. Issues in humans’ direct influences on fire regimes relate firstly to 

human fire ignitions, and secondly to human impacts on fire spread. Firstly, current DGVM 

representations of anthropogenic ignitions are based on the concept that each human globally will 

create an average number of ignitions per year (Venevsky et al., 2002; Rabin et al., 2017). As such, 

ignitions are projected based on globally-homogenous functions of coarse-resolution proxy variables 

such as population density or GDP (Figure 2.1). These anthropogenic ignition functions are produced 

by top-down model calibration to observations, and so do not represent the diverse modes of 

human fire use or their underlying rationales (Forkel et al., 2019; Teckentrup et al., 2019). The 

consequences of this are evident in the FIREMIP results themselves. For example, five out of seven 

DGVMs simply exclude fires from croplands (Table 2.1). By contrast, the Community Land Model 

(CLM) contains a separate ignition function for cropland fires (Li et al., 2012), and so was the only 

model able to capture the fire belt in the Indo-Gangetic plain (Hantson et al., 2020), which is strongly 

associated with agricultural residue burning (Gupta 2012; Liu et al 2019; Sembhi et al., 2020).  

Secondly, current DGVMs do not represent direct anthropogenic influences on fire spread outside of 

population-density derived representations of fire suppression (extinguishing of active fires; Table 

2.1). As such, reflecting on the state of fire science, Shuman et al., (2022) argue that integrating 

representation of managed anthropogenic fires into fire models is one of five key research 

challenges facing the field. This is reflective of a growing recognition of a distinction between 

damaging uncontrolled ‘wildfires’ and controlled, potentially beneficial ‘landscape’ fires (Berlinck 

and Batista, 2020; UNEP, 2022). However, whilst acknowledging that representation of human-fire 

interactions is the most serious deficiency in current global fire models, Jones et al., (2022) question 

the feasibility of capturing the heterogeneity of managed human fire uses globally. 

A further set of anthropogenic influences on fire regimes not captured by current DGVMs relate to 

humans’ indirect impact on fire regimes, particularly through fragmentation of vegetation (Harrison 

et al., 2022). Fragmentation processes include road building and conversion of natural vegetation to 

croplands, which together lead to reduced fire size and burned area, particularly in fire-adapted 

savannas (Andela et al., 2017 Haas et al., 2021). Conversely, logging of fire-prone tropical forests can 

lead to increased vegetation flammability and burned area (Cochrane 2009a). There is also an inter-

relation between managed fire use and fragmentation, as humans often use fire to prevent large 

wildfires by deliberately fragmenting flammable fuel (Laris 2002; Section 2.2.3). Representation of 

fragmentation processes in current DGVMs is limited to adjustments to burned area on croplands 

and simple changes to the vegetation characteristics of pastures in some models (Table 2.1). 
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Figure 2.1: From Teckentrup et al., 2019. Results of a sensitivity analysis conducted during 

the FIREMIP: a) percentage change in burned area of the model ensemble against a 

baseline run when CO2 (SF2_CO2), population (SF2_FPO) and land cover (SF2_FLA) were 

held constant at 1700 levels; b) underlying functions to represent anthropogenic ignitions in 

four of the five fire models used (three model ensembles comprised the SPITFIRE fire 

module coupled to differing DGVMs). Whilst two model combinations capture a net negative 

contribution of anthropogenic CO2 emissions on burned area, and others do not, there is 

little to no agreement between models about the net impact of human population growth and 

land use change since 1900 – less still the magnitude of such effects. This can be linked to 

the simple empirical functions used to represent anthropogenic impacts. See Table 2.1 for 

references.  

  

a) 

b) 
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Table 2.1: An overview of approaches to representing anthropogenic influences in models 

included within the FIREMIP (from Teckentrup et al. 2019, with additions from Rabin et al. 

2017). In models with an explicit representation of anthropogenic ignitions, these are 

calculated as a function of population density, which may be globally uniform or vary 

spatially. Where anthropogenic suppression is ‘implicit’ it is calculated within the initial 

ignitions’ calculation, whilst in models where it is represented explicitly this forms a separate 

calculation (Rabin et al., 2017).  

 

 

Model Cropland fire Pasture fire 
Deforestation 
fire 

Anthropogenic 
ignitions 

Anthropogenic 
suppression 

CLASS-CTEM None No pasture None 
Population 
density, fixed None 

CLM Yes 
Same as 
grasslands Yes 

Population and 
GDP, spatially-
varying Explicit 

INFERNO 
Same as 
grasslands 

Same as 
grasslands None 

Population 
density, fixed Explicit 

JSBACH-
SPITFIRE None 

Higher fuel bulk 
density than 
grasslands None 

Population 
density, 
spatially-
varying Implicit 

LPJ-Guess- 
SIMFIRE-BLAZE None 

Harvest of 
biomass None NA NA 

LPJ-GUESS-
SPITFIRE None 

Same as 
grasslands None 

Population 
density, 
spatially-
varying Implicit 

ORCHIDEE-
SPITFIRE None 

Same as 
grasslands None 

Population 
density, fixed Implicit 

 

References: CLASS-CTEM (Melton and Arora 2016); CLM (Li et al., 2012, 2013); INFERNO (Mangeon et al., 
2016); JSBACH-SPITFIRE (Lasslop et al., 2014, Hantson et al., 2015), LPJ-Guess-SIMFIRE-BLAZE (Smith 
et al., 2013; Lindeskog et al., 2014), LPJ-GUESS-SPITFIRE (Lehsten et al., 2009; 2016), ORCHIDEE-
SPITFIRE (Yue et al., 2014, 2015).  
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The results of DGVMs’ limited representation of human impacts on fire regimes include weak 

agreement between models on whether anthropogenic influence has increased or decreased global 

burned area since 1700 (Teckentrup et al., 2019; Figure 2.1), and only moderate model capacity to 

reproduce observed global burned area (Forkel et al., 2019). One major cause of the limited 

representation of humans’ impact on fire regimes in DGVMs is the lack of a globally applicable 

evidence base from which to develop alternative parameterisations (Jones et al., 2022). Therefore, 

the following section assesses the current state of knowledge of human-fire interactions. It argues 

that, as with global-scale modelling, global-level attempts to characterise anthropogenic fire impacts 

empirically have focused on their observed outcomes in fire regimes, but less so on the underlying 

systems and processes that drive them.  

Conversely, much progress has been made on understanding the drivers of anthropogenic fire 

impacts at more local scales. There is therefore a major opportunity to draw together knowledge 

from multiple disciplines to bridge the gap between local-scale studies that engage with the drivers 

of anthropogenic fire regimes and coarser-scale studies focused on diagnosing the quantitative 

signatures of anthropogenic impacts. Combining knowledge from across different spatial scales will 

be an important first step in developing global-scale models that are able to capture the interactions 

of socio-economic and biophysical drivers of fire regimes. 

 

2.2.2 Global human-fire interactions 
Globally, the key biophysical drivers of wildfire patterns are ecosystem net primary production (NPP) 

and vegetation moisture content (Krawchuk et al., 2009). In a Savannah ecosystem with plentiful and 

dry fuel, burned area is maximised, whilst fire is rare in either low NPP environments such as deserts 

and tundras or very moist vegetation types such as undisturbed tropical forest (Krawchuk and Moritz 

2011). Attempts to characterise human-fire interactions at the global scale have tended to adopt a 

‘top-down’ approach - working backwards from observations to try and detect and determine the 

anthropogenic signal. Such approaches have often conceptualised anthropogenic impacts as 

deviations along the same core axis as the key drivers of natural variation in fire regimes.  
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For example, drawing on the ‘dual constraint’ hypothesis of Krawchuk et al., (2009), McWethey et al. 

(2013), argue humans’ impact is to increase the amount of fire in moisture-constrained high NPP 

ecosystems, whilst decreasing the amount and extent of grassland and savanna fires due to 

suppression and fuel fragmentation (Figure 2.2). As such, the broad anthropogenic impact on fire 

regimes could be considered to be homogenisation – reducing fire in the world’s most flammable 

regions, whilst increasing fire elsewhere. This hypothesis was bolstered by Archibald et al., (2013) 

who used unsupervised learning to identify a globally-occurring ‘pyrome’ (a set of fire regimes with 

common characteristics) typified by regular, low intensity ignitions as the signature of anthropogenic 

fire regimes.  

By contrast, Pereira et al., (2022) use quantitative characteristics of fire regimes (including burned 

area, interannual variability, fire season length) derived from remote sensing to define three classes 

of regime along an access of natural to anthropogenic: ‘Wild’, ‘Tamed’ and ‘Domesticated’. 

However, such a classification does not engage with the drivers of human fire use, and so regards 

large-scale cropland burning as indicative of a ‘Tamed’ fire regime. Yet identified drivers of cropland 

burning reflect the logic of anthropogenic land use: crop type, yield gains due to fertiliser use, and 

mechanised harvesting (Kaur et al., 2022; Lin and Begho, 2022). Cropland burning cannot therefore 

be meaningfully considered a derivation of an underlying biophysical fire regime and should perhaps 

be instead understood as ‘Introduced’. 

A top-down approach is also presented by Bowman et al., (2011) who, in addition to factors 

identified by McWethey et al., (2013), highlight the importance of industrial suppression in creating 

crown fires in temperate forests, and the introduction of invasive grasses leading to fires in mid-

latitude deserts. Furthermore, in exploring the interrelationships between biophysical factors and 

anthropogenic influences, Kelley et al., (2019) found anthropogenic suppression to be critical in 

determining the degree of fire in cropland-dominated landscapes. This finding concurs with Bistinas 

et al., (2014), who found that cropland area was significantly negatively associated with burned area. 

However, Bistinas et al., (2014) also find that the influence of grazing lands was to increase burned 

area in grasslands, perhaps contradicting the findings of Archibald et al., (2011), that deliberate 

anthropogenic ignitions were a weaker influence on Savanna and grassland fire regimes than 

reduced fuel load from grazing (Figure 2.2). Finally, Benali et al., (2017) argue that the predominant 

signal of anthropogenic fire regimes is a seasonal bimodality – with fire peaks driven by the rationale 

of anthropogenic land use rather than the naturally ‘optimal’ conditions for fire. 

https://www.nature.com/articles/s41558-019-0540-7
https://bg.copernicus.org/articles/11/5087/2014/
https://bg.copernicus.org/articles/11/5087/2014/
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Figure 2.2: Conceptualising anthropogenic impacts on wildfire regimes. a) a ‘top-down’ 

approach from McWethey et al., (2013) - human impacts (dotted line) to wildfire placed along 

an axis representing the ‘dual constraint hypothesis’ of natural variation (black line) in wildfire 

regimes; b) a more granular approach from Archibald (2016) - a conceptual model of the 

multi-faceted anthropogenic impacts on fire regimes in an African savanna ecosystem. 

Whilst in the framework presented in a), reductions to fuel connectivity (fragmentation) are 

assumed to dominate the impact of increased ignition numbers, at the global scale, others, 

including Bistinas et al., (2014) have found the opposite in grasslands and pastures. 

a) 

b) 
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Therefore, existing attempts to characterise anthropogenic fire impacts as deviations from the 

prevailing biophysical drivers of fire regimes have not found an overall coherent structure to 

describe human influences. Rather, the interactions between anthropogenic land use systems and 

the biophysical drivers of fire regimes serve to create a diverse web of feedbacks that require more 

granular exploration (Table 2.2).  

 

Table 2.21: Literature examples of socio-ecological feedbacks driving global fire regimes.  

 

Anthropogenic 
fire influence Fire regime Vegetation 

Anthropogenic 
ignitions 

Extent of anthropogenic ignitions is a 
fundamental driver of global 
pyromes (Archibald et al., 2013); 
widespread fire use in agricultural 
communities can be self-reinforcing, 
as capital investment is discouraged 
due to the high risk of fire damage 
(Cammelli et al., 2020) 

NPP of grassland ecosystems 
influences livestock farmers' 
decisions about how frequently to 
burn to regenerate forage (Taylor 
2003); communities based in highly 
flammable vegetation types have 
developed complex 'patch-mosaic' 
burning to fragment fuel loads (Laris 
2002) 

Fire 
suppression 

Shocks in the fire regime tend to 
drive shifts in suppression policy, for 
example towards more preventative 
fuel load management (Ruiz-Mizaro 
et al., 2011) and prescribed burning 
(Fernandes et al., 2016; Ansell et al., 
2020) or simply through more 
stringent fire regulations (Watts et 
al., 2019) 

Fire suppression can lead to the so-
called "fire paradox" (Mahmoud and 
Chulahwat 2019) - fuel build-ups due 
to blanket suppression policies lead 
to larger fires, and possibly then also 
to changes in suppression policies 
(Eloy et al., 2018) 

Fragmentation 
and fuel load 

Logging of tropical forests increases 
their flammability (Cochrane 2009a); 
conversely, grazing reduces the fire 
proneness of savannah and 
grassland ecosystems (Archibald 
2016) 

Agricultural expansion and 
abandonment drive fundamental 
shifts in vegetation composition and 
therefore fuel load (Dara et al., 
2019); grazing removes grassy 
biomass from the landscape and can 
contribute to an increase of woody 
shrubs (Asner et al., 2004) 

 
1 This table is taken from the author’s original contribution to Ford et al., (2021) 



30 
 

Moreover, all such ‘top-down’ approaches to discerning anthropogenic influences on fire are reliant 

on satellite observations to quantify fire regimes globally. The Global Fire Emissions Database is the 

perhaps the most prominent global remote-sensing product for fire emissions and burned area (van 

der Werf et al., 2017), and was used throughout FIREMIP for model evaluation (Hantson et al., 

2016). Up until the 4th version of GFED (GFED4; Giglio et al., 2013), products have been derived from 

a combination of the Moderate Resolution Imaging Spectrometer (MODIS) and Visible Infrared 

Imaging Radiometer Suite (VIIRS).  

However, these sensors are known to perform poorly in landscapes dominated by anthropogenic 

fires (Zhang et al., 2018). This is because the majority of anthropogenic fires are smaller than the 

minimum fire size (21ha) that can be reliably captured by MODIS (Andela et al., 2019), whilst in a 

global analysis VIIRS detected an average of only 24% of fires <25ha in size (Oliva and Schroeder 

2015). Indeed, most crop residue fires in rice producing regions are less than 1 ha in size (Haider et 

al., 2013; Lasko et al., 2017; Zhang et al., 2018). In comparison with higher resolution (30m2) data 

from Landsat, it was found that MODIS data underestimated the fire count and burned area by a 

factor of 10 in a dense agricultural landscape in Western Russia (McCarty et al., 2016).   

Such shortcomings have led to the integration of fine-scale remote sensing observations (i.e. Landsat 

at 30m2 and Sentinel-2 at 20m2) into coarser-resolution global-scale burned area products. Notably, 

the 5th Global Fire and Emissions Database (GFED5), which is currently under review (Chen et al., 

2023), integrates a global sample of ground-truthed observations from these fine-scale products 

with MODIS observations to scale the MODIS record to reflect real-world burned area more closely. 

Furthermore, GFED5 includes a new crop fires algorithm (Hall et al. 2023), developed in a similar way 

with ground-truthed scaling factors, which suggests as much as 81Mha yr-1 of burned area is due to 

cropland fires. Consequently, global burned area in GFED5 between 2001-2020 is 774Mha yr-1, a 

124% increase from GFED4 (345Mha), which did not incorporate finer-scale remote sensing products 

(Giglio et al., 2013). Therefore, previous top-down attempts to classify anthropogenic fire impacts 

will need to be re-evaluated in the light of a much-revised observational record. 

  

https://www.sciencedirect.com/science/article/pii/S003442571500019X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S003442571500019X?via%3Dihub
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An alternative to discerning anthropogenic fire impacts from their observed outcomes in fire 

regimes is to classify the processes and anthropogenic systems that shape how people use fire. One 

example of this is presented by Lauk and Erb (2016). Lauk and Erb identify five anthropogenic 

regimes in current use: fires by hunter-gatherers and pastoralists; shifting cultivation fires; fire as a 

weapon; fire for vegetation clearance; and ‘combatting and preventing vegetation fires’, which 

describes industrial fire suppression. However, a weakness in this classification is that it is not 

exhaustive, for example it excludes crop residue fires, and moreover it does not capture the 

underlying socio-ecological drivers that lead to the emergence of such patterns of fire use.  

By contrast, the historical approach of Pyne (2001) identifies three underlying sets of conditions that 

shape human attitudes towards fire use and management. These are termed ‘first’, ‘second’ and 

‘third’ fire. ‘First fire’ broadly describes pre-human, lightning ignited fire regimes. Pyne’s second fire 

describes regimes shaped by human use of fire as a land management tool. Finally, ‘third fire’ 

describes the transfer of fire from landscapes to industrial centres: landscapes are shaped by 

industrial fire suppression and exclusion. However, a weakness of qualitative accounts of 

anthropogenic fire regimes - such as those of both Pyne (2001) & Lauk and Erb (2016) - is that they 

are unable to bridge the gap from their process-oriented typology to their outcomes in observed fire 

regimes. This highlights the fundamental absence of quantitative data that link anthropogenic fire 

use and management in different contexts to observations of the resulting fire regime (Forkel et al., 

2019).  

Current attempts to understand anthropogenic impacts on wildfires at the global scale, therefore, 

are hampered by the lack of a comprehensive dataset that analyses the socioeconomic drivers of 

human fire use, quantifies how humans use fire in different contexts and then links this to fire 

regime observations from satellites and other secondary data sources. This absence is also a central 

reason why the more detailed attempt of Rabin et al., (2015; 2018) to integrate anthropogenic fire 

use into a DGVM has been restricted to reproducing patterns from the past: without a basis on 

which to model the underlying factors that drive human decision-making regarding fire, it is not 

possible robustly to project how these may change in future. 
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2.2.3 Human fire interactions beneath the global scale 
Whilst detecting, quantifying and understanding human fire impacts systematically at the global 

scale remains a major challenge, much progress has been made in understanding human fire use in 

specific land use systems and at more granular spatial scales. For example, a large body of literature 

documents the integral role of fire in shifting cultivation (see Mertz et al., 2009; Van Vliet et al., 2013 

for reviews). However, whilst this system is widely studied, no recent review of the role of fire within 

it could be identified. Rather, data around fire use in shifting cultivation is most frequently captured 

incidentally in studies focused on wider humanitarian, agronomic, ecological or biodiversity 

conservation issues (see Chapter 3). For this reason, studies such as Archibald (2016) that evaluate 

the impact of specific human behaviours on fire regimes by linking them with observations of fire 

regimes remain comparatively rare beyond the local scale (Figure 2.2).   

An area in which fire use has been explicitly studied is in the place of fire knowledge within the 

broader traditional ecological knowledge of pastoral and hunter gatherer societies (Huffman 2013). 

Laris (2002) seems to be the first study to recognise the practice of ‘patch mosaic’ burning of 

Savanna vegetation types. This practice, first described in Mali, is conducted early in the dry season 

by indigenous peoples to prevent damaging late dry-season fires, and has since been documented in 

Ethiopian grasslands (Johansson et al., 2019), the Miombo Woodlands of Zambia (Eriksen et al., 

2007), the Brazilian Cerrado (Eloy et al., 2018), the savannas of Guyana and Venezuela (Bilbao et al. 

2019), and across Northern and Central Australia (Bird et al., 2005; McKemey et al., 2019). Such a 

system has been shown to be effective at controlling a fire regime: where Aboriginal burning ceased 

in the Arnhem lands of Northern Australia, lightning ignited megafires replaced previously controlled 

small-scale burning leading to an increase in burned area (Burrows et al., 2006).  

Within indigenous communities, fire knowledge may be encoded in communal fire governance and a 

community fire calendar (Shaffer 2010; Welch 2014). Further, when under pressure from external 

economic forces, such communal governance has been observed to fracture (Gil-Romera 2011; 

Bilbao et al., 2019), leading to less targeted and nuanced fire use, and greater potential for 

accidental catastrophic wildfires (Hoffman et al., 2008; Butz 2009; Rodríguez et al., 2018). The 

existence of fire knowledge as a form of social capital was also observed in Spanish chestnut growers 

(Seijo et al., 2015), and is increasingly recognised amongst state institutions: for example, in 

Australia, federal and state government agencies now commonly work alongside Aboriginal peoples 

to manage the fire regimes of protected areas and national parks (Petty et al., 2015; Neale et al., 

2019; Ansell et al., 2020). Fire use may also be self-reinforcing in agricultural communities either due 

to imitation between farmers (Lopes et al., 2020), or because risk of damage from escaped fire 

prohibits investment in more capital-intensive fire-free alternatives (Cammelli et al., 2020).  
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Conversely, where fire use is not commonly practiced in a community (often as the legacy of legal 

prohibitions), it has proved challenging to encourage land mangers to recommence fire use for 

conservation or fuel load management reasons (Kreuter et al., 2008; Harr et al., 2014; Bendel et al., 

2020; Weir et al., 2020). A lack of fire culture can cause challenges at the wildland urban interface, 

where urban residents may lack understanding of how to manage and live with fire (Curt and 

Frejaville 2017; Xanthopoulos 2018). Together, these cases provide growing and compelling 

evidence that fire knowledge and practice is transmitted through communities as a form of social 

and cultural capital. However, a majority of studies of traditional fire knowledge are conducted from 

an anthropological perspective, and so quantification of the anthropogenic fire regimes created in 

such conditions remains comparatively sparse (see Chapter 3).  

A third area in which there is growing understanding of anthropogenic fire use is in the case of 

deforestation. Cochrane (2009b) provides a robust overview of how the interplay between different 

land use actors drives deforestation fires in the Tropics. For example, in the Amazon and in 

Southeast Asian peat swamp forests, logging has played a crucial role in increasing both the 

susceptibility of forests to fire and their accessibility to local farmers through the creation of roads 

and waterways (Page et al., 2009; Cochrane 2009a).  

Furthermore, growing concern about the role of uncontrolled wildfire in tropical forests as a driver 

of climate change (Van der Werf et al., 2017; Withey et al., 2018) has led to more detailed analysis of 

how and why local people use fire in such contexts (e.g. Van Vliet et al., 2012; Carmenta et al., 2013, 

2019), and a growing recognition that political disagreements over land tenure and access to forest 

resources play a central role (Chokkalingam et al., 2007; Kull and Laris 2008; Carmenta et al., 2017). 

This assessment of the importance of the political dimensions of fire builds on previous findings that 

fire governance across much of the global South has been inextricably bound up with colonialism 

(Pyne 2001; Kull et al., 2003; Dendi et al., 2004; Hoffmann et al., 2008).  

In contrast to the cases of shifting cultivation and traditional fire knowledge, there has been much 

quantitative analysis of the extent of fire use in deforestation (Aragao and Simabukuro 2010; van 

Marle et al., 2017; Verhegghen et al, 2016; Morgan et al., 2019). However, there is currently a 

disconnect between such regional-scale quantitative approaches, typically based upon satellite data, 

and the comparatively local-scale, often qualitative approaches seeking to understand the 

underlying socio-economic drivers of deforestation fires.  

  

https://onlinelibrary.wiley.com/doi/abs/10.1002/ldr.641
https://link.springer.com/chapter/10.1007%2F978-3-540-77381-8_1
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Advances in understanding are not limited to the drivers and consequences of human fire use, but 

also to fire suppression (extinguishing of active fires). The so-called ‘fire paradox’ occurs where 

industrial fire suppression leads to fuel-build ups on the landscape that ultimately cause mega-fires 

when suppression measures fail (Silva et al., 2010; Williams 2013). This situation can be exacerbated 

by rural abandonment (Miguel-Ayanz et al., 2013), particularly where former timber plantations 

become large, unmanaged fire-prone fuel loads on the landscape (Gomez-Gonzalez et al., 2018).  

Solutions proposed include reintroducing traditional burning practices (Kolden 2019), increased fuel 

load management through ‘prescribed grazing’ (Lovreglio et al., 2013), as well as mechanical fuel 

treatments (Cochrane et al., 2012). Moreover, academic work has analysed the extent of 

implementation of such methods, as well as the institutional processes and barriers that influence 

their adoption (North et al., 2015; Spencer et al., 2015; Smith 2019). This is one of many examples 

demonstrating the integral role of feedbacks between direct and indirect anthropogenic influences 

and the biophysical processes of wildfire (Table 2.2). As in the previous cases described, however, no 

global system for classifying or assessing anthropogenic fire suppression measures has been 

developed.  

Therefore, across human fire use, management and suppression, there is an opportunity to draw 

together substantial advances in local-scale understanding of human-fire interactions into a 

systematic framework that enables analysis of anthropogenic fire impacts at the global scale. 

Constructing such a dataset would entail drawing on insights from diverse disciplines: anthropology, 

geography, ecology, conservation biology, agronomy, development and behavioural economics and 

political science. Critically, synthesising insights from across subject areas into a common format 

would provide the empirical basis for modellers to explore how fire regimes may change under 

different scenarios of future global warming and socio-economic development. 

One such synthesis of human impacts on fire regimes is presented in Chapter 3. Furthermore, the 

data that were collected through this work also contributed to the Livelihood Fire Database (LIFE) of 

Smith et al., (including Perkins; 2022). Comprising some 587 case studies, LIFE focuses on indigenous 

and small-holder farmers and seeks to capture the heterogeneity in fire uses and fire governance in 

such communities (Smith et al., 2022). By contrast, the dataset presented in Chapter 3 seeks to 

cover all types of land user and to identify broad quantitative patterns of fire use and management 

for global-scale modelling. Finally, LIFE contains a qualitative assessment of the temporal trend in 

fire use (decreasing, increasing, no change), which is used to evaluate the managed fire outputs of 

the global model presented in Chapters 4 & 5.



35 
 

2.3 New methods for modelling anthropogenic fire impacts at the global scale 
Alongside developing a robust empirical basis, improved global modelling of anthropogenic fire 

impacts will require new methods to represent human systems and decision making. Present 

approaches are not only limited in scope, but also do not seek to model the underlying drivers of 

human fire impacts, and hence their explanatory and predictive potential is limited (Rabin et al., 

2018). Agent-based modelling (ABM) has been proposed as a method for improving understanding 

of complex socio-ecological systems (SES; Murray-Rust et al., 2011; Rounsevell et al., 2012). 

However, whilst use of ABM to understand land use change has become comparatively widespread 

(see Schulze et al., 2017 for a review), the use of ABM to study anthropogenic fire regimes and 

wildfire impacts remains more limited (Table 2.3). Furthermore, implementation of ABM for study of 

SES at the global-scale remains a major technical challenge (Verburg et al., 2019; Dressler et al., 

2022). Here, a brief introduction to the strengths of ABM for modelling SES is given, followed by an 

overview of some key modelling choices related to use of ABM to model human-fire interactions, 

including the trade-offs involved with different model coupling frameworks for capturing socio-

ecological feedbacks. 

 

2.3.1 What is agent-based modelling? 
The central defining characteristic of ABM is that it is driven by explicit representation of micro-scale 

anthropogenic decision-making (Bonabeau 2002). Agents in an ABM can be individuals, households, 

communities, or government agencies, depending on the scale of the study system in question and 

the underlying research questions the model is intended to address (Robinson et al., 2006; Crooks 

and Heppenstall 2012). This bottom-up approach to simulation of systems means ABM is particularly 

adept at exploring how complex social phenomena can emerge as the aggregate result of 

comparatively simple small-scale decisions (Epstein 1999). Perhaps the most famous example of this 

is the Schelling model of community segregation (Schelling 1971).  

As agents in an ABM can be parameterised to perceive their environment, and to make decisions 

based on their beliefs about it, ABM can be highly effective at modelling the impact of 

environmental change on human behaviour (Meyfroidt et al., 2012). However, whilst these evident 

strengths make ABM a strong candidate for modelling of SES, they also point to ABM’s potential 

drawbacks: such nuanced parameterisation of a model is inevitably data hungry, making model 

validation a consistent challenge (Filatova et al., 2013; Brown et al., 2023). Furthermore, a danger of 

ABM is that granular representation of the detailed processes by which heterogenous agents arrive 

at decisions can risk producing highly complex models whose outputs are at best challenging to 

understand and are therefore potentially of limited explanatory power (O’Sullivan et al., 2012). 
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2.3.2 Overview of ABMs of human-fire interactions 
An overview of existing ABMs exploring human-fire interactions is given in Table 2.3. Seven out of 

nine identified studies are focused on developed world contexts. Perhaps as a consequence, studies 

are focused more towards anthropogenic influences on vegetation or fire suppression rather than 

managed anthropogenic fire use. In such studies, fire therefore emerges incidentally as a function of 

anthropogenic land use decisions (e.g. Ribeiro et al., 2023; Scheller et al., 2019). Indeed, only one 

identified study explores a managed anthropogenic fire use system: Ngo et al., (2012) study fire use 

amongst shifting cultivation farmers in Nghe An province, Vietnam. 

An important modelling choice in ABM is the specification of agent objective functions (Muller et al., 

2013; Huber et al., 2018). Agent objective functions define how agents decide on a course of action 

to achieve a given outcome; they are analogous to ‘utility’ functions as widely-used in neoclassical 

economics and are a primary means through which ABM can represent human decision making 

(Railsback and Grimm 2011). As such, they should be rooted in a credible representation of human 

psychology (Groeneveld et al., 2017). However, choices between different objective function 

specification involve trade-offs between computational cost, data requirements and implications for 

the interpretability of model outputs, and the degree of nuance with which a model represents a 

study system (Balke and Gilbert 2014; Sun et al., 2016). These concerns will be particularly important 

in ABM at the global scale as the size of data sets and range of processes needing to be represented 

grows. 

The simplest way to represent agent decisions is to directly code them into the model as an 

empirical statistical function. For example, Spies et al., (2017) determined fuel treatment targets (as 

a percentage of the land area they manage) for each land user type from social surveys and 

secondary data. Such a specification mitigates the need for explicit representation of the decision-

making process of, e.g., complex federal agencies or large commercial forestry ventures. A further 

comparatively simple objective function design is the expected utility maximisation (EUM) 

framework from neo-classical economics. Even though the limitations of EUM for representing 

human behaviour have in part driven the uptake of ABM, EUM functions remain common in ABM 

(Groeneveld et al., 2017). For example, Millington et al., (2008) use expected utility calculations to 

model behaviour of commercial farmers. 
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Table 2.3: An overview of objective functions in agent-based models of human-fire interactions; it is notable that, given the comparatively 

small study areas (and corresponding fine spatial resolution), that most models either rely on neo-classical economics or empirically 

defined deterministic functions to represent human decision making.  

 

Source Location 
Study 
area 
(km2) 

Study system(s) 
Primary agent 
types 

Objective function (s) Comments 

Hu & Sun 
2007 

Theoretical 
space NA 

Fire suppression 
(industrial) 

Firefighter, fire 
breaks 

Firefighters’ objective is to extinguish a fire, actioned 
based on their beliefs about the future spread of the 
fire, and effectiveness of suppression measures  

Operational firefighting 
model 

Millington et 
al., 2008 

Central 
Spain 830 

Land use change 
(principally 
agricultural land use) 
& associated wildfire 
risk 

Commercial 
land user; 
traditional land 
user 

Commercial agents maximise utility using economic 
calculations;  
 
Traditional agents’ decisions satisfice economic and 
cultural objectives 

Influence of cultural 
factors on traditional 
agents calculated from 
their relative spatial 
density at a given 
location 

Etienne et 
al., 2008 

Nimes, 
Southern 
France 57.27 

Fire suppression at 
the wildland urban 
interface 

Farmers; 
urban 
developer; 
mayor & urban 
planners 

Farmers abandon fields based on an economic utility 
function, including representation of the CAP; 
 
Urban developers, the mayoralty and urban 
policymakers act in an empirically defined way to 
propose / agree urban developments 

Model structure and 
urban development 
process determined 
through a participatory 
framework; implications 
of model for wildfire 
dynamics emerges from 
land use choices 

Ngo et al., 
2012 

Nghe An 
province, 
Vietnam 7.4 

Shifting cultivation; 
fire use is intrinsic to 
the system 

Farming 
household 

Field locations chosen for cultivation based on utility 
maximisation; number of fields chosen per household 
based on satisfying subsistence food requirement  
 
Policy, comprising both economic incentives and 
restrictions on farming acts as a weight on this utility 
calculation 

Household succession, 
migration and 
partitioning all 
represented explicitly 
based on extensive 
social survey data 
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Source Location 
Study 
area 
(km2) 

Study system(s) 
Primary agent 
types 

Objective function (s) Comments 

Spies et al., 
2017* 

Oregon, 
USA 12529 

Wildfire & forest 
management using 
coupled socio-
ecological approach 

Major 
landowner; 
family forest 
owner 

Agents have empirically defined targets for fuel 
treatment (as a % of land area managed) and 
ecosystem service provision, modified by previous 
year burned area and fuel density 

Ecosystem service and 
fuel treatment targets 
defined from social 
survey (Spies et al., 
2014) 

Minelli and 
Tonini 2018 

Canton 
Ticino, 
Switzerland 

Pilot 
study 
area 
(local) 

Wildfires; wildland 
urban interface 

Individual 
(urban 
resident); 
firefighters 

Full model development was in progress; fire ignitions 
are generated statistically, with locations based on 
movement of individual agents around a road network 

Principally an 
operational firefighting 
model, combined with a 
spatial representation of 
the WUI 

Scheller et 
al., 2019 

Lake 
Tahoe 
Basin c. 500 

Wildfires; fire spread 
modelled physically, 
whilst anthropogenic 
behaviours are 
modelled using 
empirically-defined 
statistical functions 

Firefighters; 
park ranger; 
other  

Number of anthropogenic ignitions is an empirically 
defined Poisson distribution modified by the Fire 
Weather Index for a given day; accidental and 
deliberate ignitions calculated separately. 
 
Suppression is a represented using a 0-3 ordinal scale 
(none, minimal, moderate, maximal), this becomes a 
constant that restricts the fire spread algorithm 

 
 
Deliberate 
anthropogenic ignitions 
represent prescribed 
fuel load reduction fires 
 
Suppression scale 
designed 'in 
collaboration with fire 
mangers & 
approximates the 
decisions made whether 
to suppress and the 
overall suppression 
effort' 
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Source Location 
Study 
area 
(km2) 

Study system(s) 
Primary agent 
types 

Objective function (s) Comments 

Widyastuti 
et al., 2020 

South 
Sumatra, 
Indonesia 441 

Anthropogenic peat 
fires 

Farming 
households 

Farming households create peat fires based on a 
search radius around their home location; this is 
prescribed and independent of any representation of 
underlying land-use systems 

Model is primarily of 
peatland fire spread, 
with comparatively 
detailed 
parameterisation of 
peatland hydrology 
compared to agent 
behaviours 

Ribeiro et 
al., 2023 

Centro 
region, 
Portugal 4518 

Wildfire risk 
mitigation; land 
owner vegetation 
management 
choices Land owners 

Landowners maximise their utility by choosing 
between agriculture, forest and shrubland land covers 
 
However, ‘forest inertia’ – a status quo bias for forest 
land covers – is used to constraint utility maximisation 
calculations 

Resulting fire regime, 
after landowner 
decisions, is based on a 
logistic regression 

 
*Model developed by Spies et al., (2017) also applied in Ager et al., (2018) and Johnson et al., (2023a).
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Perhaps the simplest means of implementing psychological or behaviour economical theory in an 

ABM is to set agents to ‘satisfice’ (a combination of suffice and satisfy) a range of criteria, typically 

combining economic, cultural and other objectives (Groeneveld et al., 2017). ‘Satisficing’ was first 

proposed by Simon (1955) as a means of describing the ‘bounded’ or ‘procedural’ rationality of 

human decision making (Barros 2010). Satisficing implies people may choose suboptimal solutions 

out of habit, loss aversion or because of the information effort involved with researching alternatives 

(Corr and Plagnol 2019). Boundedly rationale representations of decision-making are adopted by 

Millington et al., (2008) and Ribeiro et al., (2023). For example, in Ribeiro et al., (2023) ‘forest-inertia’ 

– a status quo bias amongst forest owners – is implemented as a simple constraint on the rate of 

land cover change. 

Further behaviourally-grounded accounts of human decision-making include ‘prospect theory’ 

(Kahneman and Tversky 1979) and ‘regret theory’ (Loomes and Sugden 1982). However, such 

nuanced representations of have not yet been implemented in ABMs of human-fire interactions. As 

behavioural science gains traction as a means of understanding community fire use (e.g. Cammelli et 

al., 2019a; 2019b; 2020), there may be increasing opportunities for researchers to implement such 

behavioural approaches in ABM to advance understanding of anthropogenic fire. 

Therefore, most existing ABMs of human-fire interactions, whilst local to regional in scale, employ 

comparatively simple agent objective functions – typically empirical statistical functions or an 

economic utility calculation. The degree of simplification also increases with study area. Possible 

reasons for this include the substantial technical challenge of firstly developing an ABM and then 

coupling it with a physically-based fire spread model (Voinov and Shugart 2013), or more simply a 

lack of available data and understanding concerning anthropogenic fire use (Forkel et al., 2019). 

Perhaps the most significant current gap in ABMs of human fire use is the lack of a full account of fire 

knowledge and use as a capital or stock within a given community (Huffman 2013). This reflects a 

broader technical challenge of representing social influence networks within ABMs of SES (Brown et 

al., 2018); one simple example of how this may be accomplished is provided by Millington et al., 

(2008), who allow the density of their ‘traditional’ land user type to influence their determination to 

continue their (economically sub-optimal) land use practice for social and cultural reasons. 
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2.3.3 Towards global ABM of SES 
A further issue in the integration of anthropogenic fire impacts into DGVMs using ABM, is the 

challenge of developing behavioural models at the global scale (Rounsevell et al., 2012). Major 

outstanding questions include how to capture the diversity of human decision making relevant to a 

given SES at the global scale, as well as how to represent the diversity of local, national and global 

actors who can influence a system in a given location (Rounsevell et al., 2014). The major current 

proposal for how to represent human decision-making in global behavioural models for integration 

with DGVMs is the Agent Functional Type (AFT; Arneth et al., 2014). AFTs provide a set of categories 

that capture the core functional diversity of human behaviours relevant to a given system.  

AFTs are the ABM equivalent of plant functional types (PFTs) that are commonly used to represent 

the key aspects of vegetation functional diversity in DGVMs (Harrison et al., 2010). For example, 

JULES, the DGVM that contains the INFERNO fire module, can be run with either five or nine PFTs to 

represent key global vegetation traits (Harper et al., 2016; 2018). Whilst PFT distributions are driven 

primarily by the ecological niches of differing plants, AFT distributions can be driven by the 

availability of different capitals – economic, social, natural etc. (Arneth et al., 2014).  

Although there is similarity in the conceptualisation and degree of aggregation between AFTs and 

PFTs, there are also important differences. Most importantly, whilst a PFT may have all of its 

attributes encoded in deterministic mathematical functions, to be rooted in a robust representation 

of human psychology, AFTs should be able to evaluate the outcomes of their actions and adapt, as 

well as interacting with the behaviour of spatially proximate AFTs (Briegel et al., 2012; Arneth et al., 

2014). However - aside from WHAM! (Chapters 4 & 5) - at time of writing no global land use ABM has 

yet been developed. CRAFTY (Competition for Resources between Agent Functional Types; Murray-

Rust et al., 2014) is the closest current attempt, and has been deployed up to the continental scale 

(Brown et al., 2020). This highlights the enduring research and technical challenges with developing 

global-scale ABM in the land use sciences (Dressler et al., 2022). 

A further major challenge in the application of ABM to global SES is representation of the policy 

development process (Brown et al., 2019). For example, whilst ABM analysis of policy outcomes and 

their (un-)intended consequences is comparatively widespread, few models have included explicit 

representation of the policymaking process itself (Castro et al., 2020). At the regional to the global 

scale, policy has so far been represented simply as a weight towards a given outcome or ecosystem 

service provision within land user calculations (e.g. Holzhauer et al., 2018).  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3223809/
https://www.nature.com/articles/nclimate2250
https://gmd.copernicus.org/preprints/gmd-2017-311/gmd-2017-311.pdf
https://gmd.copernicus.org/articles/9/2415/2016/gmd-9-2415-2016.html
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This poses several questions for the case of wildfire. Firstly, as noted in Section 2.1.3, in many 

contexts, human fire use is inherently political, bound up in questions of land ownership and the 

rights of different actors to access resources and produce commodities.  A further important 

shortcoming of a representation of policy only as an input weight parameter on ABM decision 

making is an inability to account for abrupt policy changes in response to shocks in a fire regime (see 

Table 2.2). However, even when representing policy simply through input parameters, combining 

consideration of local, national, and global policy influences with land user preferences may lead to 

highly complex emergent phenomena such as oscillations and ultimately to chaotic behaviour in a 

model, with substantial complications for model interpretation and utility (Caillaut et al., 2013).2 

Consequently, there are likely trade-offs between running ABMs globally, and therefore at the same 

scale as DGVMs, versus capturing local diversity and complexity in human-fire interactions. This same 

tension is common to several land-system sustainability questions, and hence the meso-scale – 

spanning scales between the global and local – is a current area of focus for coupled socio-ecological 

modelling (Johnson et al., 2023b). For vegetation fire, this challenge is perhaps most pertinent in 

landscapes where human influences on fire emerge from the complex interplay of both direct and 

indirect impacts. For example, capturing how human fire use, grazing intensity and cropland 

conversion interact in the savannas of sub-Sahara Africa, as described by Archibald (2016; Figure 

2.2), may be best explored at meso-scale. Similarly, capturing the impact of policy change on 

selective logging, deforestation and pasture management fire in the Amazon basin would require 

detailed representation of governance that would be challenging to implement globally (Lapola et 

al., 2023).  

 
2 This paragraph is taken from the author’s original contribution to Ford et al., (2021) 
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2.3.4 Capturing socio-ecological feedbacks: model coupling 
Capturing the dynamics of SES in modelling studies often requires coupling of different models – 

typically at least a model representing social and economic processes and a separate model of 

biophysical processes (Antle et al., 2001; Filatova et al., 2013; Robinson et al., 2018). In the case of 

wildfire, the difficulty of integrating social science insights into ABMs in a way that allows ready 

integration with biophysical models remains a central challenge, particularly where anthropogenic 

management decisions may be too small-scale for the spatial resolution of a given biophysical model 

(Kline et al., 2017). Furthermore, models in which agent behaviours are determined through 

constant empirically-derived targets or functions – rather than through dynamic agent appraisal of 

their environment – may not adequately capture anthropogenic responses to changing fire regimes 

during coupled model runs (Ager et al., 2018). 

Antle et al., (2001) first proposed the ideas of ‘loose’ and ‘close’ model coupling to determine the 

degree of integration between models in studies of SES. In ‘loose’ coupling, one model provides 

inputs that drive another model, so for example an ABM may provide anthropogenic ignition 

numbers to a DGVM; in ‘close’ or ‘tight’ model coupling, there is a two-way flow of information, such 

that states in both models are dependent on outputs of the other (Antle et al., 2001). Building on 

this framework, Robinson et al., (2018) propose a four-stage continuum from loosest to tightest, 

which in addition to the level of information passed between models also considers the frequency of 

information exchange between the models and the degree to which forcing data sets are shared.  

An illustration of the implementations of broadly defined ‘loose’ and ‘tight’ coupling options in the 

case of wildfire are presented in Figure 2.3. Capturing feedbacks such as the ‘fire paradox’ or policy 

and management responses to shocks in a fire regime requires tight model coupling. However, given 

the limited nature of existing approaches, a loose model coupling still has potential to provide a 

significant improvement in the representation of anthropogenic impacts on wildfire regimes in 

DGVMs.  
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A further consideration for model-coupling is the degree to which the technical complexity of the 

resulting ensemble, and the complexity of its outputs may be prohibitive to potential users (Larsen et 

al., 2016). Here, a loose coupling may have the benefit of facilitating prototyping of alternate 

parameterisations of human-fire interactions that can later be incorporated into computationally-

expensive coupled Earth system models (ESMs). Indeed, after the recent FIREMIP there has been a 

renewed focus on such reduced complexity approaches to identify possible parameterisations of 

human-fire interactions in DGVMs and ESMs (Haas et al., 2021; Mukunga et al., 2023; Teixeira et al., 

2023).  

However, the drawback of loose (or offline) coupling is that it would not enable full consideration of 

interactions between socio-economic and environmental change (Robinson et al., 2018). The 

limitations of this approach for understanding fire are well-illustrated by current research challenges 

stemming from biophysical and socio-economic modelling occurring in isolation. For example, the 

fire modules of DGVMs have struggled to attribute changes in global fire regimes to climate change 

due to the confounding role of wider human impacts on fire (Burton et al., 2023). Similarly, 

integrated assessment model scenarios routinely assume the possibility of carbon dioxide removals 

through reforestation without accounting for fire risk (Jäger et al., 2024). The principal downside of a 

tight coupling would be to restrict potential users to those with access to high performance 

computing, likely excluding practitioner communities on whose knowledge socio-ecological 

modelling of fire regimes will ultimately depend (Copes-Gerbitz et al., 2024). 

 

2.4  Conclusion 
This chapter has presented existing approaches to modelling and empirical analysis of anthropogenic 

impacts on fire regimes. At the global scale, it has highlighted the inadequacy of existing modelling 

approaches and the limitations of ‘top-down’ empirical approaches as a means of understanding 

anthropogenic fire impacts. Conversely, huge research progress has been made in understanding 

human-fire interactions in diverse contexts at the local and landscape scale. This therefore provides 

a major opportunity to compile this more granular-scale research into the first globally-applicable 

synthesis of anthropogenic fire impacts. Chapter 3 describes and analyses such a synthesis. 
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Beyond this undertaking, substantial technical challenges remain in developing modelling 

frameworks that allow effective representation of anthropogenic fire impacts within DGVMs. In the 

context of ABM, key challenges remain defining AFTs that adequately capture the diversity of 

human-fire interactions globally, the credible representation of wildfire policies that captures the 

possibility of sharp responses to destructive wildfires, and the coupling of such a model with a 

DGVM. Whilst key challenges remain, the shortcomings of existing model approaches demand new 

approaches and suggest that incremental improvements to current methods are unlikely to capture 

the complexity of socio-ecological feedbacks that increasingly drive Anthropocene wildfire regimes.  

 

Figure 2.33: Options for integrating an ABM of human-fire interactions into a DGVM or earth 

system model (ESM). Under a loose model coupling, the ABM would provide static inputs to 

the DGVM, for example by replacing anthropogenic ignitions from population density with an 

ABM output. Under a tighter-coupling, the ABM would be run alongside the DGVM, 

potentially allowing cross-system feedbacks to be captured, but at the expense of significant 

additional model complexity. In a loose coupling, the ABM’s ecological inputs such as land 

cover and NPP would come from secondary data. Examples of socio-ecological feedbacks 

that could be captured by tight model coupling are given in Table 2.2. 

 
3 This figure is taken from the author’s original contribution to Ford et al., (2021); it was developed in 
partnership with collaborators in the INFERNO model development team. 



46 
 

A global database of anthropogenic fire impacts  
A version of the text presented here was originally drafted in 2021. Subsequently, the database 
described in this Chapter was published in Millington et al., (2022). The content of that paper drew 
on the content in this Chapter. Material in Millington et al., (2022) sourced directly from that 
presented here is flagged to the reader in footnotes. 
 
  

3.1 Introduction 
As described in Chapter 2, providing an empirical basis for global modelling of anthropogenic fire 

impacts has been a major research challenge. Data are needed that draw together advances in 

understanding of anthropogenic fire use and management with quantification of their impacts on 

fire regimes. Lack of data that bridge this divide is an underlying cause of limitations in existing 

modelling approaches (Chapter 2). Therefore, this chapter presents a new global Database of 

Anthropogenic Fire Impacts (DAFI), developed to meet this challenge. DAFI is the product of a meta-

analysis of literature concerning human-fire interactions.   

This chapter provides an overview of how DAFI was constructed, as well as analysis of the newly 

compiled data set. DAFI was conceived both with the general aim of advancing understanding of 

human-fire interactions, but also with the specific goal of providing the basis for a global ABM of 

anthropogenic fire impacts. Therefore, data in DAFI may have multiple applications beyond the 

particular purpose of defining and parameterising an ABM. However, to focus discussion on DAFI’s 

contribution to this thesis, results presented here are centred around three issues pertinent to 

global-scale ABM:  

   

1. What are the key modes of anthropogenic fire use that should be captured in a global ABM of 

anthropogenic fire impacts?  

2. How do anthropogenic fire suppression and fire policies combine with these fire uses to 

produce observed fire regimes?  

3. What is the most effective framework to capture modes of anthropogenic fire use and the 

resulting anthropogenic fire regimes at the global scale?  

 

 

Chapter 3 
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3.2 Methods 
Methods are structured as follows. Firstly, Section 3.2.1 describes the framework used to structure 

the literature search. Secondly, Section 3.2.2 describes the data collected in DAFI, the rationale for 

collecting it, and the recording methods used for differing data (quantitative, qualitive, etc,). Section 

3.2.3 describes testing of the database format during construction, and subsequent revisions to 

ensure robustness and consistency across records. Fourthly, Section 3.2.4 describes analysis 

techniques adopted in light of the breadth, structure and recording method of the data collected 

described in the first three sections. 

 

3.2.1 Structure of literature review 
The study of SES is inherently interdisciplinary, and so frequently involves synthesising not only 

literature evidence from multiple disciplines, but diverse data types spanning a range of qualitative 

and quantitative data (Magliocca et al., 2015a; Van Vliet et al., 2016). As such, Magliocca et al., 

(2018) developed a cohesive framework for conducting such complex reviews in the 

multidisciplinary land use sciences in general, whilst the particular use of meta-analyses to define 

agent types for agent-based modelling is also widespread (Magliocca et al., 2015b).  

The preliminary literature review suggested that not only were human-fire interactions at the global 

scale highly varied, but knowledge about them was highly diffuse (Chapter 2). Therefore, adopting 

the methodology proposed by Magliocca et al., (2018), the first stage in developing DAFI was to 

define a theoretical framework to structure the literature search. Two candidate frameworks were 

identified: that of Pyne (2001) derived from a qualitative historical narrative and that of Lauk and Erb 

(2016). There are strong similarities between the two frameworks, with both broadly reflecting a key 

distinction between pre-industrial and industrial fire regimes (Seijo and Gray 2012). The framework 

of Pyne provides an overall, process-based narrative description of how and why anthropogenic fire 

use has changed over time, whilst the Lauk and Erb framework is based at the fire regime level. 

Given the need to represent human decision-making regarding fire use and management in an ABM, 

the framework of Pyne was deemed more appropriate to guide development of DAFI, but results 

from DAFI were later compared against the typology of anthropogenic fire regimes proposed by Lauk 

and Erb.  
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The framework outlined in Pyne (2001) implicitly conceptualises human fire use as a function of 

wider land use objectives, although it does not give an exhaustive account of how this plays out 

globally and in a contemporary context. Therefore, having selected Pyne as an overarching 

theoretical framework, meta-analyses from the land use literature were identified which could 

ground each of Pyne’s anthropogenic fire regimes4 in more granular land user types. Quantitative 

meta-analyses were identified where possible, but qualitative studies were used where no 

quantitative, globally-applicable meta-analysis was available. The result of this cross-referencing of 

Pyne with land use meta-analyses was a modified version of Pyne’s framework, that spanned four 

anthropogenic fire regimes: 

• Pre-industrial - analogous to Pyne’s 2nd fire, pre-industrial fire regimes are typified by active use 

of fire and limited mechanisation in land management; 

• Transition - adopting elements of both pre-industrial and industrial regimes; 

• Industrial - analogous to Pyne’s 3rd fire, fire use for land management is replaced by 

mechanisation and chemical fertilisers; 

• Post-industrial - deliberate or unintentional re-introduction of fire to a landscape as an ecological 

process. 

As the goal of the database was to capture anthropogenic activities, the adapted version of Pyne’s 

fire regimes were split across three land use systems:  

• Cropland, which included secondary vegetation in a shifting cultivation mosaic;  

• Pasture, which included both planted pastures and semi-natural rangelands; and  

• Forests, including all natural, plantation and degraded forests.  

These three land cover types broadly cohered with the framework of Lauk and Erb (2016), who 

distinguished, e.g., between shifting cultivation and pastoral fires, as well as forest fire management 

and suppression. Therefore, the combination of the modified version of Pyne’s framework and three 

land cover types provided a structure to guide the literature search, and in effect became a 

preliminary set of AFTs (Table 3.1). 

  

 
4 Pyne’s ‘1st fire’ describes a pre-anthropogenic, lightning-ignited fire regime 
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Table 3.1: Framework used to structure the development of DAFI. The fire regimes of Pyne 

(2001) provided the overall theoretical framework, with more detailed meta-analyses 

providing specific land use / fire development stage AFT types to be defined through data 

gathering. The transitional and post-industrial fire stages are not part of Pyne’s original 

framework but were present in the global meta-analyses used to define preliminary AFTs for 

both cropland and pasture land use types, and so were included here. Preliminary AFT 

categories marked ‘*’ were not defined prior to database construction but emerged from 

literature reviewed during the gathering of data itself. 

 

 

Sources: 1) Quantitative analysis of Malek et al., (2019); 2) Quantitative analysis of Blanco 

et al., (2015); 3) Mixed-method analysis of Coughlan et al., 2018; 4) Qualitative typology of 

de Haan et al., (2010); * Category emerged during data gathering

 Land use (land cover) type 

Fire regime   

(Pyne 2001) 

Forest & 

plantation forests 

Pasture & 

grassland 

Cropland & secondary 

vegetation 

Pre-industrial  
(‘2nd fire’) 

Hunter gatherer3 Migratory 

pastoralist4 

Shifting cultivation 

farmer1 

Transition Small-scale 

forester* 

Agroforester* 

Extensive 

rancher4 

Mixed crop-

livestock small-

holder4 

Small-holder (survival-

oriented)1 

Small-holder (market-

oriented)1 

Industrial            

(‘3rd fire’) 

Industrial forester2; 

  

Conservationist2 

Intensive 

rancher4 

Landless 

livestock farmer4 

Industrial / commercial 

farmer1 

Post-industrial fire Tourist / tourist 

manager2  

Urban resident / 

planner* 

Abandoned 

farmland* 

Agro-ecologist1     

.        
Abandoned farmland* 
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Whilst several papers have attempted to categorise the signatures of anthropogenic fire regimes 

from their quantitative signal in remote sensing and other secondary data (Chapter 2), no study has 

yet compiled a global synthesis of understanding across all types of anthropogenic fire use. Although 

Huffman (2013) and Coughlan et al., (2018) have conducted global syntheses, these were restricted 

to traditional fire use, principally in a hunter-gatherer or pastoralist context. Similarly, Smith et al., 

(2022; including Perkins) focus on indigenous and small-holder fire users. Furthermore, despite the 

crucial role of fire in the land system, a review of meta-analyses in the land use sciences conducted 

by Van Vliet et al., (2016), did not identify any such studies focused explicitly on fire use. As such, no 

framework from which to define formal literature search terms could be identified.  

Additionally, attempts to conduct formal meta-analyses with specific search terms have tended to 

report limited numbers of papers identified for human fire use compared to the wider fire 

management and ecological literature (Nikolakis and Roberts 2020). Finally, during database scoping, 

it became clear there was vastly diverging terminology used across differing subject disciplines, even 

when reporting on similar aspects of human fire use. Terms used to describe crop residue burning 

are provided as an example in Table 3.2. This diverse terminology is symptomatic of fire being 

studied primarily as incidental to, or as a function of, a separate study system. For example, 

deforestation fires being studied in the context of wider discourse about biodiversity loss (e.g. 

Mangora 2005; Meyfroidt et al., 2012; Cano-Crespo et al., 2015), or shifting cultivation fire being 

studied in the context of political ecology or sustainable development discourses (e.g. Pingali 1987; 

Dawoe et al., 2012; Norgrove and Hauser 2015).  

Therefore, given the fragmented literature and associated terminology across multiple sub-

disciplines, within each preliminary AFT category a snowball search method was adopted to ensure 

the multiple ‘hidden’ literature populations could be identified (Johnson 2014). The implications of 

snowball sampling for the analysis techniques used on the resulting data are discussed in Section 

3.2.4.  
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Table 3.2: Overview of diverging terminology in literature containing data on burning of 

agricultural residues. In the case of ‘crop’ residue burning, the crop would frequently be 

commodity specific – (e.g. rice, wheat, etc). The diversity of terminology reflects the 

fragmented nature of academic literature on anthropogenic fire use and served to confound 

a wholly systematic meta-analysis methodology.  

 

Primary focus  
of study Terminology Example(s) 

Agronomy, 
agricultural 
economics 

"straw use" 
 
"straw management" 
 
 
"(crop) residue management" 

 
Sun et al., 2019 
 
Allen et al., 2019 
 
Dubinin et al., 2011;  
Lopes et al., 2020 

Remote sensing, 
environmental 
monitoring 

"agricultural fires" 
 
"(agricultural) residue burning" 
 
"stubble burning" 
 
"crop residue burning" 

McCarty et al., (2016) 
 
Ahmed et al., (2015) 
 
Singh and Kumar 2020 
 
Yang et al, 2008 

Air quality, public 
health 

"Air quality AND burning" 
 
"Air pollution AND burning" 
 
"Haze AND burning" 
 
“Respiratory health AND burning” 

Mittal et al., 2009;  
Bray et al., 2019 
 
Kaushal 2020 
 
Zhao et al., 2017 
 
Uriarte et al., 2009 

Regional and / or 
commodity-specific 
case study 

"veld fires" 
 
"sugar cane AND fire" 

Dube 2015 
 
Rudorff et al., 2010 
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The literature search was conducted in a number of stages for each preliminary AFT category: 

 

1. The first step was to locate existing reviews or foundational papers within each preliminary AFT 

category that could provide the basis to identify potential sources of data; a complete list is 

provided as Appendix 3A. Where possible, these were specifically focused on fire use and 

management, but were chosen from the land use literature where none could be identified. 

2. Using the citations within these meta-analyses and subsequent papers citing them as a starting 

point, a body of papers was developed with the snowball approach. This was complemented 

with targeted searching of particular terms where a substantial population was identified. A list 

of search terms identified is provided in Appendix 3B. This could provide the basis for 

reproducing DAFI, and / or building upon data gathered to date with further systematic 

searching. 

3. The literature identified relevant to a particular preliminary AFT was then checked for 

geographic representativeness by additional searches for papers with keywords from those 

identified with the addition of country names from underrepresented geographic regions. For 

example, ‘Russia AND crop residue burning’.  

 

As a central goal of DAFI was to underpin development of a global ABM and the main aim of that 

model will be to help understand future wildfire patterns under varying socio-ecological conditions, 

the focus of the review period was set as 1990-2020. However, earlier data were included if they 

were reported alongside data post 1990, or in the case of shifting cultivation, where including papers 

from the late 1980s facilitated stronger spatial coverage in available data and allowed the system to 

be observed without disruption from external economic and social forces. This was done to facilitate 

parameterisation of a ‘baseline’ state for this system in the ABM. 
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3.2.2 Data collection  
 

The strategy for data collection was to record information in quantitative format where possible, but 

to encode qualitative data in the database where this was not possible. The literature review 

(Chapter 2) indicated the key areas of data to be collected to improve DGVMs were:  

• Anthropogenic fire use;  

• Fire suppression; and  

• Fire policies adopted by both government and non-governmental institutional actors. 

Papers were considered for inclusion in the database if they reported at least one human fire 

behaviour from at least one of these three categories. The following sub-sections provide detail of 

data captured in each of these three areas, as well as data collection and decisions made on 

database structure that were informed by the planned use of the database to develop an ABM. An 

overview of data captured by DAFI and formats is provided in Table 3.3, whilst database metadata 

are in Appendix 3C. 

Table 3.3: Summary of data recorded and format in DAFI; although anthropogenic fire use 

was recorded as quantitative information, this was recorded as binned ranges where these 

numbers were estimated from proxy variables.  

Information type Principal data format Recording method Notes 

Anthropogenic fire 
use 

Quantitative Quantitative 
Values recorded for both 
intended and actual fire use 

Fire suppression  Mixed Ordinal scale  

Scale values - 0: none, 1: 
limited or ad-hoc, 2: 
moderate or traditional; 3: 
intensive or industrial 

Fire policy Qualitative  Boolean 

Boolean values for fire bans, 
restrictions short of a ban 
and economic incentives 
offered by government and 
non-governmental 
institutional actors 

Land use type, 
intensity & land 
cover   

Mixed 
Quantitative & 
categorical 

Quantitative values for land 
cover and land use intensity; 
qualitative categories for 
land use and land tenure 
type  



54 
 

3.2.2.1 Capturing human intentions 

The framework of Pyne (2001; Table 3.1) and the ABM presented in Chapters 4 & 5 conceptualise 

human fire use and management in the context of underlying land use intentions and objectives. 

This central organising assumption informed a range of choices in the structure of DAFI. Firstly, the 

principal data type included in DAFI was primary field data, as this had the best chance of linking 

together specific human behaviours with observed fire regimes. However, it was found during 

database construction that such data were weighted towards pre-industrial fire uses, and so remote 

sensing and secondary data from government and institutional records were also included where 

these reported human fire behaviours. Remote sensing was also valuable in capturing data from 

regions which are challenging for fieldwork, such as the Congo basin. As noted in Chapter 2, MODIS 

and VIIRS data do not perform well in studies of anthropogenic fire regimes. As such these were not 

included, and only local to landscape remote sensing data at spatial resolution of Landsat (30m2) or 

finer were used; this included studies based on visual interpretation of high-resolution satellite 

imagery and landscape photographs (e.g. Araki 2007).  

Similarly, because of the importance of underlying land use rationale of anthropogenic fire use to the 

planned ABM, a set of initial fire intentions were devised to classify fire uses. Drawing on the 

frameworks of Pyne (2001) and Lauk and Erb (2016) and wider initial review, these were set as: field 

preparation in the context of shifting cultivation; pasture renewal; deforestation; arson; and 

accidental. As new categories emerged during data collection these were added, leading to a final list 

of 21 fire uses (appendix 3D). 

Data in DAFI were reported in units where the underlying land use regime was constant. For 

example, a study reporting data from two locations would be reported as at least two case studies, 

but this might be split further if there was a pronounced change in land use at these sites during the 

study period, e.g. before and after the collapse of the Soviet Union (Dara et al., 2019). Recording of 

case studies in this way allowed data about the land use context of human fire behaviours to be 

recorded. Land use data selected for inclusion were those with an impact on the fire regime and 

those criteria that helped to define the land use typology of Malek et al., (2019). Therefore, the 

presence and rate of biomass removal through extractive logging, and the stocking rate of livestock 

were recorded, as they directly impact fuel loads and subsequently influence fire regimes. Average 

farm size, mean crop yield, and land tenure regime were recorded as they were factors driving the 

typology of Malek. Finally, to facilitate modelling of the spatial distribution of AFTs, the land cover 

percentage was recorded under the categories given in Table 3.1. Land cover categories were kept 

deliberately broad to allow ready integration of the planned ABM with DGVMs (Chapter 4). 

Categories for land tenure types were based on Payne (2004). 
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3.2.2.2 Anthropogenic fire use data5 

In anthropological literature describing pre-industrial fire practices, the entire distribution of fire 

sizes within a study area was rarely reported, with authors instead reporting summary statistics such 

as a mean or minimum and maximum value. Therefore, data were gathered for minimum, median, 

mean and maximum fire size and were recorded separately under these distinct categories. 

Furthermore, fire use data were collected on both intended and actual fire sizes and burned area. 

This was to ensure the resulting ABM could be used to explore how anthropogenic land use systems, 

and their accompanying fire use rationales, lead to observed fire regimes.  

Intended fire use can be determined from reported preferences in field interviews (e.g. Thaler and 

Anandi 2017) or institutional management plans (e.g. van Wilgen et al., 2013). Alternatively, 

intentions can be inferred from crop field size (e.g. Liu et al., 2019; Ahmed et al., 2015), or from 

median patch size in a pastoral or patch mosaic burning system (e.g. Wesche et al., 2000a, 2000b). 

The median is taken to account for fires becoming out of control, as was the case during a 

particularly dry year in the study period of Wesche et al., (2000b). Where inferences about intended 

fire sizes were made from proxy variables such as field size, the resulting uncertainty was reflected 

by recording data in binned ranges (Section 3.2.3). By contrast, actual fire sizes were reported from 

observations of a fire regime, such as the landscape-scale remote sensing study of pasture fires in 

the Brazilian Amazon of Jakimow et al., (2018), or the field data gathered by Kull (2003). Similarly, 

anthropogenic fires were recorded in DAFI as either deliberate, accidental or escaped (fires started 

deliberately that grew beyond their original purpose and intended size).  

As noted in Chapter 2, humans’ influence on fire regimes is not restricted to direct, or intentional, 

impacts. For example, landscape fragmentation through building of roads or reducing fuel loads 

through grazing of livestock may indirectly have a greater impact on fire regimes in African savannas 

than direct fire impacts such as anthropogenic burning (Archibald et al., 2011). For this reason, in the 

initial database structure both direct and indirect impacts of fire use, suppression and policy were 

recorded. However, records of indirect impacts were reduced substantially during database testing 

(see Section 3.2.3).  

Finally,  recognising the importance of changes in seasonality are in important anthropogenic impact 

on global fire regimes (Benali et al., 2017; Le Page et al., 2010), the first and last month in which a 

given fire practice was used was recorded where available.  

 
5 The first two paragraphs in this section form the basis of section 2.2.1 in Millington et al., (2022) 
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3.2.2.3 Anthropogenic fire suppression data6 

The literature review indicated that information on human fire suppression is presented in both 

quantitative (e.g. percentage of the land where fuel treatments were prescribed, Barret et al. 2016) 

and qualitative formats (e.g. use of improvised fire beaters, Carmenta et al., 2019). Furthermore, no 

existing framework could be found at the global scale to structure the recording of such information. 

Therefore, as in Stein et al., (2017) who co-developed a scale alongside fire suppression experts for 

use in the forests of Oregon, a four point (0-3) ordinal scale was adopted. Zero represented a 

reported absence, 1 indicating a minimal or ad-hoc approach, 2 indicating the application of 

traditional fire knowledge or an intermediate industrialised approach, and 3 indicating an intensive 

industrialised approach. Finally, suppression was split into:  

• fire control, for actions taken immediately prior to lighting a deliberate fire to control its 

behaviour;  

• fire prevention, for actions taken to control the wider fire regime, particularly to prevent 

catastrophic wildfires; and  

• fire extinguishing, for actions taken to put out active wildfires.  

3.2.2.4 Fire policy data7 

Fire policy data were overwhelmingly reported in a qualitative format, typically describing the history 

and rationale of a particular policy, and possibly the range of actors involved in forming it. Policies 

were recorded where they involved either legislative bans or restrictions on fire use short of an 

outright ban, as well as economic incentives that encouraged or discouraged fire use. Policy actors 

included in the database were National governments, state and local government, NGOs, private 

companies, and supranatural bodies such as the EU and UN. During database construction, three 

underlying rationales for fire policy measures were found to occur regularly and provide a coherent 

framework to capture the driving force behind policy choices. These were:  

• environmental policies, which included measures made to protect biodiversity, water quality 

or to prevent soil erosion; 

• economic policies, covering bans that aimed to eradicate fire use to encourage agricultural 

intensification, as well as incentives to clear primary forest for economic development; 

• human health policies, principally capturing fire policies made to improve air quality, but also 

those that aimed to protect people from death directly due to wildfire.

 
6 This section forms the basis of Section 2.2.2 in Millington et al., (2022) 
7 Text in this section is found in Millington et al., (2022), section 2.2.3 
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3.2.3 Database testing and construction 
To ensure the planned database structure was both clear and robust, a process of iterative 

improvement was conducted. Under this process, sets of three papers were entered into the 

database by three different researchers (the author, supervisor and a research volunteer), allowing 

inputs to be compared and checked for consistency. After the first set of three papers, it was found 

that indirect anthropogenic impacts on fire regimes are currently too poorly understood and 

constrained to allow consistent recording at a global scale. Therefore, these were removed from the 

database. However, given that Teckentrup et al., (2019) highlighted representation of fuel loads as 

an important area in which global fire models could be improved, quantitative data on biomass 

extraction from the landscape through grazing and extractive forestry continued to be recorded.  

The inputs from the second set of trial papers were in closer alignment. The major change made at 

this stage was to split quantitative information on anthropogenic fire use into ‘reported’ and 

‘estimated’. This was done because, as noted in Section 3.2.2, much fire data available in papers was 

incidental to the core focus of the study, and therefore a degree of calculation was required to 

convert or interpolate this data into a consistent format for recording.  

For example, in some cases, mean intended fire size could be estimated for crop residue fires from 

the mean field size because where residues are burned in situ the two are very closely linked (Liu et 

al., 2019). However, where residues are gathered and pile burned, only around 1/9th of the field area 

is burned (Hong van et al., 204; Liu et al., 2019). The assumptions made in these calculations were 

recorded in the notes of each relevant database record for information and scrutiny by future users. 

Estimated fire use data, where such interpolation was required, was recorded in binned ranges, 

whilst reported data remained reported as simple numbers. Ranges of values for the bins were taken 

from existing literature approaches.  
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3.2.4 Data analysis 
Given the necessity to use snowball sampling, a formal meta-analysis framework for the review - 

involving significance testing of distinct hypotheses - was not appropriate (Magliocca et al., 2015a). 

For example, the assumptions of many statistical tests include the independence of observations to 

calculate degrees of freedom, which was likely violated given the data collection process required. 

Therefore, rather than a strict meta-analysis, the review took the form of a ‘site comparison’ 

(Magliocca et al., 2015a). As a result, analysis of the database drew on multiple techniques.  

Firstly, case analysis, in which the proportion of database records matching certain Boolean or 

categorical criteria were calculated, was used to assess broad patterns of anthropogenic fire 

behaviour. However, where possible, spatio-temporal variation in quantitative database variables 

was assessed under a multiple working hypotheses framework (Millington and Perry 2011; Magliocca 

et al., 2015a). Such an approach enables contrasting hypotheses to be encoded as alternate models 

of the data, and their relative merits evaluated without the strict experimental design requirements 

of null-hypothesis significance testing (Millington and Perry 2011). The Akaike Information Criterion 

(AIC) was used as a metric to evaluate alternative models of the data (Akaike 1973). AIC is commonly 

used as a statistical measure of model performance in multi-model inference. It is derived from the 

Kullback-Leibler divergence (Kullback and Leibler 1951), which can be conceptualised as describing 

the information lost by describing the true distribution of a data set with a given model (Lambert 

2018).  

An additional challenge was presented by the 83 database records (271 case studies) which 

presented an overall quantification of a fire regime, and noted the underlying anthropogenic 

behaviours that created it, but did not quantify the relative impact of each behaviour directly. These 

‘regime and behaviour’ records were typically derived from secondary data (185 cases), such as 

government statistics, or remote sensing (38 cases), where quantitative assessment of the overall 

fire regime was complemented with a qualitative account of anthropogenic behaviours. A further 36 

cases were based on primary data, typically ecological surveys with only incidental description of 

human impacts. Given the difficulty of discerning the degree to which each recorded behaviour 

impacted the overall regime, regime and behaviour records were held back from initial analysis so 

they could be used for calibration of the planned ABM.  
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An exception to this approach was taken for records at the wildland urban interface (WUI). This was 

because records at the WUI were dominated by the regime and behaviour type, and so quantifying 

human influences on these regimes required extrapolation from these records: just five 

quantifications of fire use by urban residents were directly reported, whilst 73 were obtainable 

through use of regime and behaviour records. To extrapolate from the overall regime to specific 

anthropogenic behaviours, the overall regime reported from secondary data or remote sensing was 

simply divided evenly between the underlying behaviours – e.g. if the overall burned area was 20% 

and four fire uses were reported, these would be assigned 5% burned area each. In all cases where 

this extrapolation took place, the resulting information was recorded as an estimate in the 

appropriate binned range.  

 

3.2.5 Database availability 
The data presented here are made freely available online (Perkins and Millington 2021), as well as 

analysis code (Perkins and Millington 2020). 

 

3.3 Results8 
DAFI comprises data from 514 papers containing 1841 case studies. Data were overwhelmingly taken 

from the academic literature (94% of case studies), but were also sourced from grey literature 

produced by governments and NGOs (5%). A plurality of data were sourced from primary field 

sources (47%), but remote sensing (19%) and secondary data sources (31%) including both 

government statistics (25%) and literature reviews (6%), were also important. Data included from 

literature reviews were principally fire policy information for a given location or region. Other 

smaller data sources were expert elicitation (2.6% of cases, n = 48), but also included media reports 

(n = 4), a report on a practitioner prescribed burning workshop (n = 3), archival research (n = 2), and 

a personal communication from a study author (n = 1). The geographic distribution of papers 

compiled by data source is given in Figure 3.1.  

Reflecting the fragmented nature of the fire literature, data across all DAFI fields are sparse, with 

only an average of three quantitative fire metrics per case study, meaning 92% of the quantitative 

variables for each fire use record were missing. No single case study contained data for all variables 

in the database. The implications of this are addressed in the discussion (Section 3.4).

 
8 This introductory results section (Section 3.3) appears in Millington et al., (2022) as section 2.3 
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Figure 3.1: Spatial distribution of records compiled in DAFI, grouped by data source. Secondary data from government and institutional records 

were widely available across the Continental USA, as well as in Mediterranean Europe and fire-prone areas of China and South America. 

Primary field data were overwhelmingly focused towards studies of behaviours that were also of anthropological, agronomic or development 

economics interest such as shifting cultivation and the presence and practice of traditional fire knowledge. Remote sensing was effective for 

studying larger study areas (e.g. Boreal Canada, Central Australia, Siberia), but was also an important source of data for less accessible 

locations such as the Congo Basin and the rainforests of Papua New Guinea.  
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3.3.1 Characteristics of an anthropogenic fire regime 
Perhaps the most striking aspect of the data collated in DAFI is the very high density of fires that 

typify anthropogenic fire regimes (Figure 3.2). Whilst MODIS-derived fire data suggest a median 

value of <0.01 fires km-2 year-1 (Andela et al., 2019), DAFI data show that deliberate anthropogenic 

fires occur (where present) at a median and mean rate of 0.06 and 1.6 km-2 year-1 respectively. 

Highly dense anthropogenic fires are found in very fertile agricultural areas such as the Mekong 

River Delta, where around 96 fires km-2 Year-1 are reported, whilst at the sparser end of the scale 

pasture fires are reported at 0.11 fires km-2 Year-1. Similarly, fire return intervals were typically short, 

with median of 3 and mean of 5.5 years.  

Conversely, whilst anthropogenic regimes are typified by large numbers of fires, they are also 

defined by small fire sizes. The median anthropogenic fire size is just 1 ha, with interquartile range of 

0.4-13.5 ha. However, the mean fire size was 1357.2 ha and the overall distribution of fire sizes most 

closely followed an exponential distribution – but only when the logarithm of the observed sizes was 

taken (AIC: log exponential 1626.11, log normal 3143.71). A Weibull distribution - which may 

partially account for overdispersion - provided the best fit to the untransformed data (AIC 8122.39; 

exponential 15979.34). This may suggest that previous studies of fire sizes that have found the un-

transformed distribution to be itself exponential may undercount the number of very small (<1 ha) 

fires in anthropogenic fire regimes, which serve to create such a skewed distribution.  

In both the spatial density of fires and fire size there is a pronounced difference between fires in 

cropland systems and those lit or ‘broadcast’ onto the wider landscape (Figure 5). Median 

anthropogenic cropland fire size was 0.5 ha, whilst pasture and other broadcast fires had a median 

size of 6.2ha. This pattern was mirrored in a substantial difference in sizes of escaped fires: whilst 

the overall mean fire size for cropland fires remained small (1.6ha), the mean broadcast fire size was 

59.2ha. Cropland fire sizes are closer to a log exponential distribution (AIC 492.81) log Weibull (AIC 

502.63). Broadcast fire sizes are closer to a log Weibull (AIC = 1680.40) than log exponential 

(1693.51). Taken together, this represents reasonable evidence that fires broadcast onto (semi-) 

natural landscapes are best considered as a separate process to cropland fires. 
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Figure 3.2: Distribution of metrics for anthropogenic fires - a) number of fires; b) fire sizes 

and c) fire return period. Fire density data are heavily positively skewed, but both the median 

and mean are four times higher than suggested by MODIS fire products. The distinction 

between cropland and wider landscape fires is particularly pronounced for fire sizes, where 

even on a logarithmic scale, so-called ‘broadcast’ landscape fires remain over-dispersed. 

Fire return period follows an exponential distribution, with a second peak at 12 years driven 

by one large study of shifting cultivation (Araki 2007). 

a) 

 

b) 

c) 
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3.3.2 Assessment of preliminary AFT framework 
Overall, 21 anthropogenic fire uses were identified during database construction (appendix 3D). 

However, several of these were substantially similar, for example: pasture renewal and rangeland 

management; or prescribed fire for biodiversity conservation and prescribed burns for wildfire 

mitigation. Therefore, after such similar types were combined, seven fire uses emerged that had 

more than 100 instances in the database (or more than 2% of recorded instances of anthropogenic 

fire use). Together these seven types accounted for 93% of human fire use records. These seven 

were: arson, crop field preparation in shifting cultivation, crop residue burning, vegetation clearance 

fires (deforestation), pasture management fires, hunting and gathering, and fires lit to manage the 

wider pyrome. 

The seven identified fire use types closely correspond to the anthropogenic fire regimes in the 

typology of Lauk and Erb (2016), but with the addition of residue burning and with pastoralism and 

hunting and gathering split into two categories. Further, data coverage is mostly strong across the 

seven fire use types, with all quantitative fire metrics captured for six of the seven key types (Figure 

3.3). This comes with two important caveats. Firstly, as an inherently illicit practice, arson, for 

obvious pragmatic reasons, is not well quantified. Secondly, although use of fire for hunting and 

gathering is well represented in the numbers of instances (n = 213), the studies of this fire type were 

principally anthropological and therefore primarily reported qualitative results, particularly for fire 

suppression behaviours (n = 110). This leads to fewer than five quantitative data points being 

captured for fire use in hunting and gathering in the two fire density variables in the database. 

However, overall, agreement with existing research and good data availability make these seven fire 

use types a strong starting point for defining the fire use aspects of AFTs in the planned ABM.  

Similarly, the preliminary AFT framework defined from previous quantitative analysis and theory 

(Table 3.1), proved effective at capturing the broad global patterns of anthropogenic fire uses. The 

preliminary AFTs showed strong coherence with particular fire uses (Figure 3.4) and fire suppression 

behaviours (Section 3.3.4). Whilst a formal statistical test would be unwarranted, owing to 

uncertainty about the independence of data in database records, this coherence between key fire 

uses identified through database construction and preliminary AFTs provides assurance that they are 

robust starting point to capture the core modes of human fire use globally. 
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Figure 3.3: Number of DAFI instances and corresponding counts of quantitative metrics for each major fire use type. Data for 
intended and actual fire sizes and burned area percentage are grouped together. Primary vegetation clearance fires were treated as 
one-off, rather than cyclical events, so no fire return period is recorded.  
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Figure 3.4: Intersection of key fire types with preliminary AFTs in DAFI; key fire types were defined as those with more than 100 
instances. Colour scale gives the proportion of database instances of fire use for each AFT that belong to each key fire type. Burning 
of forestry residues is grouped under ‘crop residue burning’. AFTs are organised from pre-industrial to post-industrial (left to right) 
within each land use system. 
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3.3.3 Analysis of fire use types9  
This section provides a quantitative overview of the seven key anthropogenic fire uses captured in 

DAFI, as well as the underlying land use rationale that drives the observed spatial distribution and 

quantitative patterns observed in the database. A map of these fire use types is given in Figure 3.5, 

whilst a summary of their quantitative signatures is given in Table 3.4. 

 

3.3.3.1 Shifting cultivation fires 

Fires to facilitate shifting cultivation (‘slash and burn’) are overwhelmingly clustered in the tropics 

(Figure 3.5). At the latitudinal boundaries of shifting cultivation practice, where it is conducted in 

savanna woodlands or shrubby grasslands rather than dense tropical forests, fire use is sometimes 

replaced with labour-intensive ‘mulching’ practices (Dawoe et al., 2012). This points to net primary 

production (NPP) playing a restrictive role on fire use in shifting cultivation, as in lower NPP 

ecosystems biomass is insufficient to fertilise fields with the ash resulting from small fires. An 

intermediate stage, where biomass is collected from a wide area and then burned on a small plot, is 

observed, for example in the Miombo woodlands (Araki 2007). 

As with cropland fires overall, shifting cultivation fires are typically 1ha or less in size, reflecting the 

size of plots cleared by farmers. Much research has focused on fallow periods as an indicator of the 

sustainability of shifting cultivation systems, which vary substantially with population density and 

land availability (Van Vliet et al., 2013). Data in DAFI point to a mean fire return period, which is 

closely linked to fallow length, of 9.8 years. Finally, although shifting cultivation may be densely 

practiced within a mosaic of agricultural plots, secondary vegetation and fallows, the overall system 

is sparsely distributed. Whilst shifting cultivation systems burn an average of 14.2% of the secondary 

vegetation mosaic, they only burned an average of 2.8% of the entire reported study area. This may 

reflect accessibility as a significant driver of the density of shifting cultivation, as whilst farmers may 

prefer the higher yields produced by clearing longer fallow lengths, often these are further from a 

settlement and more labour intensive to clear (Jakovac et al., 2017). 

 
9 This section (3.3.3) is provided in full as Supplementary Information A in Millington et al., (2022) 
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Figure 3.5: Spatial distribution of key fire use types identified in DAFI. The seven fire use types listed here accounted for 93% of all 

anthropogenic fire use instances in the data. 
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Table 3.4: Overview of quantitative characteristics of the seven central modes of anthropogenic fire use identified in DAFI. Primary 

vegetation clearance was assumed to be a one-off event and hence has no fire return period. 

 

Fire use 
Mean fire size 

(ha) 
Mean burned area 
(% Land cover yr-1) 

Mean burned area 
(% Study area yr-1) 

Mean fire return 
period (years) 

Escape rate 
(% fires) 

Crop field 
preparation 

0.7 14.2 2.83 9.8 0.09 

Crop residue 
burning 

3.2 37.3 13.2 1.5 0.03 

Pasture 
management 

18.7 32.1 17.1 3.2 6.47 

Hunting and 
gathering 

1.7 14.3 16.7 4.3 2.70 

Primary 
vegetation 
clearance 

7.5 6.6 1.2 N/A 0.95 

Pyrome 
management 

207.1 8.9 1.2 5.7 0.08 

Arson N/A N/A N/A N/A N/A 
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3.3.3.2 Crop residue burning 

As agriculture intensifies and becomes sedentary, yields increase and crop residue disposal comes to 

be a significant activity for farmers. Burning of surplus residues typically peaks in the latter stages of 

transition to an industrial fire regime, particularly as use of machinery becomes more widespread 

(Kumar et al., 2015). Machinery use frequently leads to increased rates of residue burning, because 

when residues are hand harvested it is less burdensome to gather them for use either as domestic 

fuel or fodder for cattle (Hong van 2014; Lasko et al., 2017), and because machinery is associated 

with larger farm sizes where residue availability exceeds amounts that can be practically used 

(Ahmed et al., 2015). Therefore, in mixed arable-pastoral subsistence small-holders, burning may be 

absent because residues present an important source of livestock feed (Keck and Hung 2019).  

Furthermore, where burning is conducted on hand-harvested residues, these may be pile burned 

(Lasko et al., 2017), leading to approximately 1/9th of the area of a field being burned (Liu et al., 

2019). Whilst where machine harvested residues are broadcast burned in situ, the intended fire size 

is typically approximate to the field size (Mendoza et al., 2015; Liu et al., 2019). The main restriction 

on residue burning in an industrial or post-industrial fire regime is air quality legislation (Jajtic et al., 

2019; Sun et al., 2019; Boossabong and Chamchong 2020). For this reason, the practice is largely 

absent in intensive agricultural regions in Northern America and Northern Europe (Smil 1999), as 

well as Australia and Brazil (Mendoza 2015). Similar concerns are now driving policy in areas of 

Northern India and China (Peng et al., 2016; Sembhi et al., 2020).  

Whilst the mean fire size for residue fires is similar to that of crop field preparation fires in shifting 

cultivation systems (Table 3.4), anthropogenic fire regimes dominated by residue fires typically 

produce a much higher burned area percentage, with a mean value of 37.3%. This is largely because 

residue fires are predominantly lit annually, or even more frequently under double-cropping or 

triple-cropping systems (Hong van 2014; Kumar et al., 2015). However, this increased burned area 

compared to shifting cultivation may also occur because permanent fields are situated in a tighter 

mosaic, as accessibility concerns are less relevant. Finally, the amount of residue burning varies with 

commodities: for example, in Suqian province of China, potatoes, legumes and corn were more 

frequently used as fuel or mulched back into the soil, whilst burning of rice and wheat straw was 

endemic (Yang et al., 2008). Similarly, sugarcane produces lots of residue removal fires, as these 

must be cleared to allow efficient harvest (Rudorff et al., 2010).  
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3.3.3.3 Pasture management fires 

Burning of both planted pastures and native grasslands used for livestock grazing is a widespread 

practice, serving to rejuvenate the nutrient quality of forage for livestock (Laris 2002; Jakimow et al., 

2018; Johansson et al. ,2019) and prevent the encroachment of woody shrubs (Twidwell et al., 2013; 

Vehrs 2016). As with shifting cultivation, NPP is a principal driver of whether livestock farmers use 

fire, and how frequently. For example, whilst pasture renewal fires are widespread across much of 

Sub-Saharan Africa and Amazonia, the practice is not used by pastoralists on the Mongolian steppe 

(Saladyga et al., 2013) or in mountainous areas of Patagonia (Easdale and Aguiar 2018). Simply put, if 

all available forage in an ecosystem is required to feed a livestock herd, a farmer will not burn it to 

improve its nutrient quality; this trade-off has been observed not only in pre-industrial, but also in 

comparatively intensive farming in the USA (Taylor 2003).  

However, fire use among livestock farmers is driven by a range of factors in addition to NPP. Fire use 

to control the tsetse fly is common in Sub-Saharan Africa and can cause farmers to decrease fire 

return period to around two years (global mean of 3.2 years) to keep grass short enough to prevent 

tsetse fly infestations (Trollope 2011). Similarly, on communal rangelands, livestock farmers may also 

use fire to facilitate accessibility and ward off predators and snakes (Mbow et al., 2000). 

Furthermore, Kull (2003) noted that in Madagascar use of fire to combat locusts and to renew 

pastures were often interchangeable – and pests were often used to justify pasture fires as the latter 

fire use was illegal. Therefore, depending on location, such additional considerations may increase 

fire use, or only suggest that a single fire may be lit for multiple reasons.  

Finally, the decision to use fire for livestock farmers can be heavily shaped by the existence of fire 

knowledge or culture in a community. For example, in rangelands used for livestock grazing in the 

USA, state agricultural and conservation organisations have made significant efforts to reintroduce 

prescribed burning to prevent woody encroachment and to conserve biodiversity, but have been 

met with substantial resistance by farmers (Chapter 2).   
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As areas used for livestock grazing are typically larger than crop fields, pasture fires are notably 

larger (mean = 18.7 ha) than crop residue fires (3.2ha). Furthermore, perhaps because the average 

intended fire size is larger than for arable fire, escaped pasture fires are more frequently noted as a 

cause of uncontrolled wildfires than cropland fires: 6.5% of pasture management fires were noted as 

escaped, compared with 1.3% overall, and less than 0.1% of cropland fires. Two factors suggested as 

influencing the rate of escaped pasture fires are logging of surrounding vegetation and non-native 

grasses (Uhl et al., 1985; Bowman et al., 2011). However, no meaningful difference in the rate of 

escaped fires could be found due to the presence of extractive forestry (5.5% of fires vs 6.6% of cases 

where extractive forest was not present or not reported in a case study). Data on presence of 

invasive grasses was not recorded systematically, but studies in Northern Australia (Neale and 

Macdonald 2019) and Amazonian Brazil (Cammelli et al., 2019b) both noted flammable exotic 

grasses originally introduced for their nutrient content as contributing to the occurrence of wildfires. 

Pasture fires lead to a mean burned area of 32.1% of the pasture in a landscape, and 17.1% of the 

overall study area.  

 

3.3.3.4 Hunting and gathering 

Similar to shifting cultivation, use of fire for hunting and gathering is closely linked to the properties 

of the underlying ecosystem. However, the range of techniques used in hunting and gathering and 

resultant impacts on the fire regime are more diverse than other preindustrial fire types (Table 3.5). 

For example, in the Western Australian Desert, Aboriginals can light hunting ‘drive’ fires – where fire 

is lit to push wild animals towards a certain location – over very long distances (up to 130km) 

(Burrows et al., 2006). Conversely, Aboriginal people hunting for turtles in a wetland environment 

used fires with a mean size <1ha (McGregor et al., 2010); fire use for fishing in peat swamps follows a 

broadly similar pattern, with multiple very small fires (<10m2) lit each year on the same patch of 

ground. By contrast, gathering of non-timber forest products (NTFPs) consistently results in small 

fires. Harvesting of wild honey, for example, uses fires often no bigger than a single fire stick, but can 

be important to a fire regime due to escaped fires (Schmerbeck 2003; Shaffer et al., 2010). In 

addition to the diversity of practices involved, and as noted above, a further challenge in quantifying 

fire use in hunting and gathering is the limited quantitative data available. 
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Table 3.5: Overview of fire size in hectares of fire use for hunting and gathering in DAFI. 

Whilst the minimum, median, mean and intended maximum appear to be from a similar 

distribution, the actual maximum is multiple orders of magnitude greater, indicative of great 

heterogeneity in the practice. 

 

 

 

 

 

 

3.3.3.5 Primary vegetation clearance  

As a frequently illicit practice, just 97/354 instances of primary vegetation clearance were based on 

primary field data. ‘Primary’ is explicitly used here to differentiate such fires from shifting cultivation, 

in which fire is used rotationally to burn secondary vegetation (Table 3.4). Alternative methods used 

include remote sensing (137/354) and expert elicitation (63/354). In many cases, such studies of 

primary vegetation clearance fires were focused on deforestation and biodiversity conservation 

concerns, and therefore reported the size and rate of clearings, but not the frequency with which 

fire, rather than machinery, was used (Morton et al., 2006; Cochrane 2009a). Therefore, data on 

deforestation fire sizes are widely available, but burned area percentages were often challenging to 

calculate. However, there is an apparent trend that as land use becomes more industrialised, the size 

of vegetation areas cleared increases (Figure 3.6). Furthermore, the proportion of fire use records 

attributed to primary vegetation clearance was 42% for intensive farmers, compared to only 26% for 

arable small-holders.  

A large literature documents the processes that lead to tropical deforestation in a degree of nuance 

that is beyond the scope of DAFI (Eliasch 2008; Rakatama et al., 2017; Fischer et al., 2020). However, 

in general terms, as the size of clearances increased with economic development, and a greater 

proportion of fire use instances for livestock and intensive arable farmers were attributed to 

deforestation than for more subsistence-oriented land users. This may suggest that, rather than 

enabling land to be spared (Cerri et al., 2018), land use intensification increases farmers’ economic 

incentives to deforest land (Kubitza et al., 2018) and may increase the overall quantity of fire use in 

land clearing.  

 Minimum Median Mean Maximum 

Intended 0.63 1.17 2.13 12.2 

Actual 1.38 1.31 1.31 8345.00 
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Figure 3.6: Comparison of sizes of vegetation clearance fires in DAFI for different agent 

functional types. There is a clear trend for clearing sizes to become larger with larger 

operation sizes and with availability of machinery. Compared to the arable land use types of 

a similar fire regime, livestock farmers tend to clear larger areas, a pattern reflected in the 

typical fire sizes in their respective cyclical fire uses and driven by the relative area of land 

required by each farming system. Where deforestation fire was present in the context of 

shifting cultivation (swidden), this was most commonly where, after a plot was used for 

agriculture temporarily, it was converted into pasture or other productive land use.
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3.3.3.6 Pyrome management and pyro-diversity 

Fire is widely adopted by a range of land users to manipulate the overall fire regime of a landscape. 

This includes burning done to reduce the risk of wildfire damage to persons and property, but also 

fires lit for biodiversity conservation purposes – where fire creates vegetation of differing 

successional stages on a landscape, and therefore encourages biodiversity (Parr and Andersen 2006; 

Bowman et al., 2016).  

Fire regimes generated by these behaviours differ widely, based on both the environmental and 

socio-economic context in which prescribed burning takes place. For example, although fire fighting 

agencies do conduct prescribed burns, these are often met with internal resistance from fire fighters 

(Spencer et al., 2015; Section 3.3.4.1), resulting in smaller burned areas on average and smaller fires 

(Figure 3.7). However, there is also large variation in how state forestry agencies used fire depending 

on the climate and vegetation type managed: the US Forestry Service prescribed burn size averaged 

around 20ha in densely populated California, but was between 500-1000ha in the Sonoran Desert in 

Arizona (Barnett et al., 2016).  

Conversely, where biodiversity conservationists manage large areas, such as in the Savannas and 

grasslands of Southern Africa, these can be rotationally burned in blocks of 60-400ha to foster pyro- 

and bio-diversity (Goodenough et al., 2017). The most extensive and intensive burning programmes 

for pyrome management were found in Northern Australia, where a combination of the traditional 

ecological knowledge of Aboriginal peoples, and industrial technology, has enabled a post-industrial 

implementation of a quasi-traditional (pre-industrial) fire regime (Petty et al., 2015; Neale et al., 

2019; Ansell et al., 2020).  
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Figure 3.7: Fire size distributions for pyrome management fires. Fire sizes are closely 

related to the area of land management by a given land user: large fire sizes used by 

conservationists reflect large protected areas which may be rotationally ‘block burned’. 

Conversely, industrial forestry and fire fighting agencies (‘fire suppression agent’) generally 

light smaller fires, often owing to policy barriers and other institutional resistance to 

prescribed burning; however, where prescribed burning was widely practiced, the size of 

managed area gave potential for very large fires. Subsistence-based farmers burned to 

protect their crops, often where broader agricultural fire uses were widespread. Intended and 

actual fire sizes are combined. 

 

3.3.3.7 Arson 

As an inherently illicit and often clandestine practice, arson was poorly quantified in the available 

data. Therefore, analysis here is restricted to case analysis. Arson was most frequently observed 

where conflicts over land use occurred: land tenure was recorded as insecure in 48 of 82 database 

instances where arson was present and a description of land tenure was also given in a case study. A 

further 15 of these 82 cases were recorded as ‘mixed’ land tenure. Arson as a weapon in land use 

and land tenure conflict was most frequent where shifting cultivation and industrial forestry were 

present, as local small-holders protested allocation of their former lands held under traditional land 

tenure to large-scale commercial plantations (e.g. Suyanto et al., 2004; Chokkalingam et al., 2007). A 

similar pattern was also observed where arson was present on lands allocated for biodiversity 

conservation: in 23/35 cases such arson was used by small-holder farmers or hunter-gatherers, 

primarily to protest the restrictions placed on their livelihoods by protected areas. However, in 9/10 

of these cases where land tenure was noted, it was described as centrally-allocated or mixed, 

perhaps reflecting the perspective and focus of the underlying biodiversity conservation literature.



76 
 

3.3.4  Fire suppression 

Although recorded on an aggregated ordinal scale, clear patterns of fire suppression behaviours 

come through in the data (Figure 3.8). In general, the emphasis in pre-industrial AFTs is on fire 

prevention using traditional fire knowledge (66/106 cases). This pattern tends to fracture during 

transition, which shows the greatest proportion of uncontrolled fire (46/148 cases) or fire used with 

only ad-hoc control (61/148). AFTs from the industrial fire regime focus on suppressing fire through 

extinction, typically with industrial or intensive means (107/184 cases).  

However, a more complex picture emerges in the post-industrial fire regime. On the one hand, fire 

prevention and control using traditional fire practices begin to re-emerge (37/201, 22/54 cases 

respectively), whilst simultaneously, a lack of knowledge of living with fire and agricultural 

abandonment lead the dominant signal to be an absence of fire prevention (117/201 cases). Two 

striking examples of how suppression behaviours define and shape fire regimes are at the wildland 

urban interface (WUI), and in the practice of traditional fire knowledge. These are discussed in more 

detail below.   

 
Figure 3.8: Overview of fire suppression behaviours in DAFI. AFTs were grouped according 

to their respective Pyne fire regime. Fire prevention and control of deliberate fire use are the 

dominant suppression behaviours undertaken in the pre-industrial era, whilst extinction 

becomes more dominant in later stages. Agricultural abandonment and the wildland urban 

interface together drive the lack of fire prevention activities undertaken in post-industrial fire 

regimes. 
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3.3.4.1 The Wildland Urban Interface 

The WUI emerges as a distinct phenomenon in the data through the collision of multiple actions. 

Firstly, both tourists and urban residents are associated with high levels of accidental ignitions: 59% 

and 42% of fire instances associated with urban residents and tourists respectively were accidental. 

Accidental ignition sources include cigarette buts, car exhausts, and escaped domestic fires. The 

result is a fire regime which is almost never ignition limited (Figure 3.9). However, such frequent 

ignitions are typically combined with intensive fire extinguishing, which means virtually all fires are 

suppressed at less than <1ha. Furthermore, the quantitative overview of the WUI presented in Figure 

3.9 may underestimate ignitions: because of the disaggregation required to define fire behaviours at 

the WUI, numbers only include fires started by urban AFTs. This may mean, particularly in developing 

world contexts, that fire used in agriculture close to urban areas is not fully captured (de Torres Curth 

et al., 2012).  

As well as providing significant levels of accidental ignitions, urban residents also consistently 

resisted fuel-load management on their properties, either through a lack of awareness of fire risk 

(e.g. Curt and Frejaville 2017; Xanthopoulos 2018) or because dense vegetation is seen as 

aesthetically attractive (e.g. Gibbons et al., 2017). For this reason, and for air quality concerns with 

prescribed burns (Burrows and McCaw 2013), government agencies responsible for tackling wildfires 

typically only engaged in modest fire prevention measures at the WUI. Finally, particularly in 

Mediterranean landscapes, abandoned farmland and plantation forests present large, unmanaged 

fuel-build ups that are highly susceptible to fire (e.g. Koutsias et al., 2012; San-Miguel-Ayanz et al., 

2013). The result is a fire regime characterised by abundant very small fires, with occasional 

megafires multiple orders of magnitude larger than the median fire size in the regime. 

  



78 
 

   

Number of fires 
(study area; km-2 yr-1) 

Actual median 
fire size (ha) 

Actual mean fire 
size (ha) 

Actual max fire 
size (ha) 

Actual Burned Area 
% (study area) 

0.3068 0.5 0.7307 18607.3 2.34 

 

Figure 3.9: Anthropogenic fire behaviours at the Wildland Urban Interface - a) suppression 

behaviours of key actors and b) resulting fire regime from fires started by urban residents. 

Data in a) were filtered for case studies in which urban areas were present; b) contains both 

deliberate and accidental fires. The burned area number only accounts for fires started by 

urban residents at the WUI (not including escaped agricultural fires, e.g.) and so may be an 

underestimate, particularly in developing world contexts. Plentiful ignitions, combined with 

abandoned land, intensive fire extinction and a lack of rigorous fire prevention combine to 

create the conditions for megafires.

b) 

a) 
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3.3.4.2 Traditional fire knowledge 

Traditional fire knowledge (TFK) is highly evident amongst pre-industrial AFTs, particularly in case 

studies where the dominant preliminary AFTs were of the pre-industrial fire regime (“first fire” sensu 

Pyne). This is demonstrated by the frequency of ‘moderate or traditional’ fire control and fire 

prevention attributes for pre-industrial AFTs where they constituted the dominant land use and fire 

regime: 58% of fire suppression behaviours were categorised as ‘moderate or traditional’ in the pre-

industrial regime, compared with only 42% of cases in transition and beyond. Given that TFK 

frequently involved community fire control and prevention – for example a communal fire calendar 

or means of fire governance (Section 2.2.3) it is possible to identify the influence of such community 

actors on fire use in the pre-industrial fire regime. The fracturing of communities possessing and 

practicing TFK is evident in how a more mixed picture develops during economic development (and 

corresponding fire regimes). For example, fire control in pre-industrial shifting cultivation landscapes 

frequently applied TFK to prevent escaped wildfires (15 of 27 cases, 56%), whilst where shifting 

cultivation occurred alongside more intensive land uses, this dropped to only 14/35 cases (40%) with 

the remaining 21 cases having limited and no fire control. A similar decrease in TFK was noted 

amongst migratory pastoralists when alongside more intensive land uses.  

However, hunter gatherer communities overwhelmingly maintained TFK in both the pre-industrial 

regime and beyond – in 30/49 of all cases (61%) TFK was used to control deliberate fires whilst in 

37/45 (82%) of cases TFK was used in fire prevention (Figure 3.10). Furthermore, seven cases were 

recorded of TFK being reintroduced with active government support in a post-industrial context (four 

of which were in Australia), indicative of the cultural importance and longevity of fire knowledge in 

some indigenous communities (e.g. Hill et al., 1999; Prober et al., 2016). An outlier to this trend is 

found in Indonesia, where even in predominantly pre-industrial fire use contexts, fires for hunting 

are regularly lit without any control (11 cases). This may be caused by locals not having reason to 

value peat swamp forests, which are seen as a source of disease and pests (Chokkalingam et al., 

2005; Tacconi et al., 2006). Furthermore, the extent of wildfires caused by uncontrolled hunting fires 

in this country is in part attributed to climatic variability driven by El-Nino droughts (Stockwell et al., 

2016), perhaps pointing to the difficulty of adapting for subsistence land users. 
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Figure 3.10: Overview of traditional fire knowledge (TFK) in DAFI for selected AFTs. TFK is present in 58% of reported fire 

suppression behaviours in the pre-industrial regime, but only 42% of cases otherwise. 5% of examples of TFK beyond the preindustrial 

phase were where traditional burning was actively reintroduced with government funding and support. 
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3.3.5 Fire Policy 

Whilst multiple policy actors, spanning local, regional and national governments, NGOs and supra-

national institutions were included in DAFI, national governments were the dominant policy actor, 

accounting for 91% of policy prescriptions, with NGOs and the European Union / United Nations 

accounting for 4%, and private companies 1%. The majority of land users targeted by fire policy were 

from the pre-industrial fire regime, and the dominant policy interventions recorded in the database 

were to ban or restrict use of fire, together accounting for 69% of fire policies (Figure 3.11).  

There is some evidence that fire bans may be counter-productive, with bans leading to less-

controlled or clandestine fire use and less effective fire prevention, particularly amongst non-arable, 

pastoral or hunting (‘broadcast’) fires (Figure 3.12). For example, where fire was used by livestock 

farmers, it was more than three times as likely to be applied with no control where fire was banned 

(8/20 cases; 40%) than when it was not (4/34 cases; 12%); hunter gatherers were more than twice as 

likely to do so. Conversely, where shifting cultivation fire was present, farmers were more likely to 

apply traditional fire knowledge to controlling their fires in contexts where fire was banned – 

perhaps indicating that many bans were not enforced. This is possibly because such practices 

typically took place in remote locations (Brinkmann et al., 2014) or because fire users had no 

alternative (e.g. Carmenta et al., 2019), or because bans were holdovers from colonial policies that 

were rarely enforced (Kull 2003; Eriksen 2007). However, shifting cultivation farmers were also more 

likely to use fire without control when banned (5/23 cases) than when not (3/47 cases). 

Although the rationale for policy change was not encoded directly in DAFI data, where a single case 

study had more than one fire policy governing a similar behaviour over the study period, a review of 

free text notes in the relevant database records suggested in 25 of 60 cases this change was linked to 

concerns over damage from specific wildfire events to people or the environment. This constitutes 

additional evidence to that presented in Chapter 2, that much wildfire policy is made in reaction to 

shocks in a fire regime.  
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Figure 3.11: Distribution of fire policy types by fire regime, showing policy was overwhelmingly 

targeted towards pre-industrial fire use types.  

 

 

Figure 3.12: Impact of fire bans on degree of fire control amongst selected AFTs. Bans appear 

counter-productive when applied to hunter gatherers and extensive cattle farmers, leading to an 

increase in uncontrolled fire use. 
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3.4 Discussion 

This chapter has presented DAFI, a new global database of anthropogenic fire impacts. It has sought 

to identify the key global modes of anthropogenic fire use, as well as the most appropriate 

underlying framework to capture them in a global model. Finally, it has sought to explore how fire 

use, suppression and policy combine to produce observed anthropogenic fire regimes. Analysis has 

identified seven key drivers of anthropogenic fire use, which capture 92% of recorded instances of 

deliberate anthropogenic fire in DAFI. The differing quantitative characteristics of these seven modes 

of fire demonstrates how anthropogenic land management objectives ultimately shape 

anthropogenic fire regimes. As such, treating all anthropogenic ‘ignitions’ similarly, without 

considering the fire users’ objectives, as in current dynamic global vegetation model representations 

(Teckentrup et al., 2019), is unlikely to capture the drivers of global fire regimes. Furthermore, the 

preliminary AFT framework used to structure the literature review is effective at capturing both 

these core modes of fire use, as well as key patterns of diversity within them. Together, the seven 

identified central fire use types and the preliminary AFT framework therefore provide a strong 

starting point for the development of a global ABM. 

However, challenges remain concerning the availability of data and the geographic 

representativeness of existing literature studies. Furthermore, whilst the WUI, practice and 

transmission of TFK and the potential for fire bans to lead to uncontrolled, illicit fire use could be 

clearly identified as three instances of how anthropogenic-influenced fire regimes emerge from 

combinations of fire use, suppression and policy, much work remains to capture these more robustly 

at the global scale. Therefore, discussion focuses on an assessment of data quality and availability, 

before discussing the overall signatures of anthropogenic fire regimes, and how these emerge from 

underlying human behaviours and land use systems. 

3.4.1 Data quality and availability  

As noted in Section 3.2.1, globally, anthropogenic fire use has been studied by a wide array of 

disciplines, but often only as a function or incidental consequence of another process or system. 

Conversely, where anthropogenic fire use has been studied explicitly, it has often been in the context 

of anthropological literature that primarily reports qualitative data: instances of fire use for hunting 

and gathering in the database averaged 0.52 quantitative metrics reported compared to 0.92 overall. 

There is, therefore, still a substantial need for detailed studies of industrial fire uses that link fire 

regime observations to land use rationale, and studies of pre-industrial fire uses such as Johansson et 

al., (2019) that provide detailed field-based quantification of anthropogenic fire regimes alongside an 

account of the rationale driving fire use in the location10. 

 
10 This paragraph appears in Millington et al., (2022), section 4.1 
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One consequence of this fragmented literature is that quantification of data poorer fire uses, 

particularly hunting and gathering and arson, retains a high degree of uncertainty. From existing 

data, it is not possible, for example, to discern whether hunting fires > 8000 ha are a true outlier or a 

part of a separate population of large fire drives that should be considered and parameterised 

separately (Table 3.5).  Furthermore, at the WUI, reliance on extrapolation of secondary data sources 

to construct the contribution of differing actors to this phenomenon adds significant uncertainty. 

This is compounded by the differing definitions of a ‘fire’ in government statistics according to varied 

cultural or operational practices. For example, in the United Kingdom, all known fires are recorded in 

government statistics, which implicitly assumes that few or no fires are started deliberately (Gazzard 

et al., 2016). Conversely, in China, data are recorded for a word that translates literally as ‘fire 

disaster’ or ‘forest fire disaster’, which does not include controlled ‘biomass burning’, leading to a 

much smaller count of fires (Yan et. al, 2006; Liu et al., 2010). 

A further consideration common to many meta-analyses in the land use sciences is the geographical 

representativeness of the available literature. Here, DAFI does achieve geographic coverage in areas 

such as the Nile Delta, Northern India and the Congo Basin that where data on the drivers of land use 

change are currently sparse (Malek and Verburg 2020). An advantage available in the study of fire 

use as opposed to land use change is that local-scale, high resolution remote sensing is able to 

quantify behaviours to a degree to which it can be linked directly to a particular human behaviour.  

However, data are still sparse in Russia and Kazakhstan. For example, just 32 case studies (1.7%) in 

DAFI are from Russia, despite it occupying some 13% of ice-free land area. This data gap is partly 

because some government statistics in the region need to be treated with caution (Goldammer et al., 

2013), and so are not included in DAFI, and perhaps also partly because wildfires in the Northern 

Boreal and Arctic regions of Russia are still a relatively recent emerging environmental hazard on a 

large scale (Feurdean et al., 2020)11. However, a limitation of DAFI is that it did not include non-

English language publications. Hence including Russian-language publications in a future iteration of 

DAFI could help fill this important knowledge gap. This is particularly pertinent given southern Russia 

is a region where GFED5 shows a particularly substantial increase in burned area over GFED4 (Chen 

et al., 2023), and because of the growing issue of peatland fires due to climate change (Blackford et 

al., 2023). By contrast, not including Spanish or Portuguese language publications did not 

substantively hinder geographic coverage in South America, which accounts for 18.6% of case studies 

(13.6 % of global ice-free land area). 

 
11 This paragraph appears in Millington et al., (2022), section 4.1 
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Whilst geographical coverage is perhaps less of an issue than in some land use meta-analyses, a 

particular problem for the study of fire use is the presence of fire free land users or AFTs. For 

example, whilst the abandoned farmland preliminary AFT clearly does not intentionally start 

agricultural fires, the fuel build-ups associated with rural abandonment contributed to damaging 

wildfires at the WUI. Whilst papers discussing the role of land abandonment in fire regimes met the 

inclusion criteria of featuring at least one anthropogenic fire behaviour, studies which did not discuss 

anthropogenic fire impacts, particularly where fire-free land use dominated, and where no indirect 

impacts on fire regimes were reported, did not meet criteria for inclusion12.  

Therefore, the extent to which DAFI is representative of fire-free farming methods such as intensive 

mechanised cropping or agroforestry will need to be considered during AFT distribution modelling 

(Chapters 4&5). Two measures were taken to mitigate against this issue: firstly, the recording of fire 

‘absence’ records where a fire use was noted as such in a paper (15% of all fire use records) and 

secondly by recording all AFTs noted in a study, regardless of whether they were noted as 

contributing to the fire regime13.  

 

3.4.2 Emergence of anthropogenic fire regimes  
At the global scale, the quantitative signature of anthropogenic fire regimes found in these results 

are closest to the ‘pyromes’ approach of Archibald et al., (2013), who suggest that the anthropogenic 

footprint is principally to push diverse natural fire regimes towards a homogenous picture of many, 

cool and small fires. However, exceptions to this are found in large-scale deforestation for 

commercial agriculture, as well as the potential for blanket fire suppression to contribute to the 

occurrence of megafires. This points to the underlying difficulty of categorising anthropogenic fire 

impacts based on their quantitative signal alone, as multiple interacting social and ecological drivers 

frequently collide to produce observed fire patterns in ways that are hard to discern from a purely 

‘top-down’ approach. For example, in the case of how isolated rural communities respond to 

economic development, the combination of persistent fire use, diminishing fire knowledge and 

fracturing of communities under market forces and population growth can together lead to phases of 

chaotic and uncontrolled fire use.   

  

 
12 This paragraph appears in Millington et al., (2022), section 4.1 
13 This paragraph appears in Millington et al., (2022), section 4.1 
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However, although this phenomenon is perhaps the starkest example of the influence of fire 

knowledge and culture in the data, it is far from the only one. Rather, attempts to reintroduce 

prescribed burning in diverse post-industrial contexts highlight the pervasive influence of such social 

dynamics in fire use decision-making (Figure 3.7). Differing land users have tended to respond in 

diverse ways to the reintroduction of deliberate fire: from resistance amongst fire fighting agencies, 

to limited uptake amongst livestock farmers, to acceptance and advocacy amongst conservation 

organisations. This dynamic highlights the need identified in Chapter 2 for local-scale ABM that 

explores the transmission of fire knowledge through communities such that robust theories can be 

developed.  

In spite of these complications, results paint a clear picture of the overall signature of anthropogenic 

fire regimes. Previous empirical and modelling studies have found fire sizes in a regime to follow a 

(negative) exponential or power-law distribution (Malamud et al., 2005). This study provides some 

support for this finding, but also adds important caveats and considerations. Firstly, when all fires, 

including very small anthropogenic fires are considered, fire sizes may be best described by an over-

dispersed exponential, and secondly that cropland fire sizes are closer to a lognormal distribution 

(Figure 3.2).  

A possible explanation for the over-dispersion of the distribution of broadcast landscape fire sizes is 

fire suppression. For example, at the WUI, the impact of fire suppression seemed to be to 

concentrate burned area into a very few mega fires, further skewing the density of the distribution 

into smaller fire sizes (<1ha). The original cellular automata model that projected fires should follow 

an exponential did not include representation of fire suppression (Malamud et al., 1998). Therefore, 

the role of suppression in shaping the distribution of fire sizes should be comparatively easy to 

reproduce theoretically with some simple additions. Conversely, in the case of landslides, Guzzetti et 

al., (2002) argue that the overdispersion of the observed sizes of landslides suggests large landslides 

(>30m) are driven by fundamentally different physical processes to those small enough to follow 

river channels. A similar phenomenon may be observed in DAFI, with anthropogenic cropland fires 

and wildfires best considered as separate populations governed by differing underlying processes.   
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The spatial density of fires in anthropogenic landscapes is the flip-side of their small mean and 

median fire sizes. Whilst several authors have noted the mediocre performance of coarse-resolution 

remote sensing products in arable landscapes (e.g. McCarty et al., 2016; Zhang et al., 2018), results 

here also point to deficiencies across a wider range of anthropogenic fire regimes. This presents a 

substantial technical challenge and barrier to advancing understanding of the relationship between 

anthropogenic behaviours and observed fire regimes. However, the disagreement remains most 

acute in fire regimes dominated by cropland fires. Although the upper end of the distribution of fire 

density of ~90 fires km-2 year -1 suggested by DAFI may be surprising, we argue that this makes sense 

when placed in the context of the fire-generating land-use system.  

For example, in the Mekong Delta, there are typically three harvests a year, on fields averaging 0.9 ha 

in size (Hong van 2014; Zhang et al., 2018). Applying a conservative assumption that a third of fields 

are burned at each harvest, suggests 111 fires per km2 of cropland: allowing space for unfarmed 

spaces such as hedges, marginal lands etc. makes 90 fires km-2 year -1 seem a reasonable number. 

Therefore, whilst previous Landsat studies had suggested that MODIS data underestimated the 

number of fires in similar agricultural landscapes by a factor of 10 (McCarty et al., 2016), these 

results suggest the underestimation to be an order of magnitude larger than this at the upper end14. 

 

3.4.3 Future development of DAFI and data on human fire interactions 
The most substantial geographical weaknesses in DAFI are in Northern and Eastern Russia. Russian 

language publications were not included in the database, so these may provide a resource for 

improving coverage. Conversely, whilst studies of hunter gatherer fire use are numerous (n = 320), as 

noted in Section 3.3.2, the anthropological focus of these studies entailed that quantitative data 

were sparse. One option to improve coverage is for field-based human-fire researchers to conduct 

surveys of the local landscape during their fieldwork placement with unmanned aerial vehicles 

(commonly known as UAVs or drones). This could allow estimation of the number of fires km2-1 year-1 

in the landscape, as well as calculation of the distribution of fire sizes.  

  

 
14 This paragraph appears in Millington et al., (2022), section 4.2 



88 
 

This points to a wider need in remote sensing studies of human-fire interactions – not only must they 

be of an appropriate spatial resolution to capture anthropogenic fires (Section 3.3.1), but they must 

be robustly linked to specific anthropogenic behaviours. Without this precise link to anthropogenic 

process, the resulting research tends to be of the ‘regime & behaviour’ type (Section 3.2.4), which is 

less useful for precise quantification of systems of anthropogenic fire use and management. 

Similarly, there is potential for more qualitatively-focused research of fire use in an industrial or post-

industrial context. The WUI was dominated by ‘regime & behaviour’ studies, and future studies could 

work on defining and quantifying specific anthropogenic behaviours at the WUI more precisely.  

3.5 Conclusion 
 

The lack of a globally applicable data set has presented a major hindrance to the development of 

improved representation of anthropogenic fire impacts in DGVMs. The database presented here 

should make a significant contribution to addressing that knowledge gap and help to formalise 

understanding of anthropogenic fire use globally, which to this point has been fragmented across 

multiple disciplines and addressed primarily at local and regional scales. Analysis has focused on 

establishing the most important anthropogenic fire uses for inclusion in a global ABM, on defining a 

framework to capture the central modes of anthropogenic fire use and suppression, and on how 

anthropogenic fire regimes emerge from the interaction of fire use, suppression and policy contexts.  

Seven fire use types have been identified, which account for 92% of fire use instances in DAFI, and 

therefore provide a robust starting point for global modelling. Furthermore, both the variation 

between and within different fire use systems are captured effectively by the preliminary AFT 

framework presented. Two prominent cases of the emergence of anthropogenic fire regimes have 

been identified – the presence (or absence) of TFK and the WUI. However, further research is needed 

to explore emergent properties of anthropogenic fire regimes which have not previously been 

identified in the literature. 

However, significant data gaps remain, particularly in Siberia and in the quantification of fire use by 

hunter gatherers.  The ordinal scale required to capture suppression behaviours in DAFI could be 

improved by analysis of the effectiveness of fire suppression measures against fires of different size 

and radiative power. This would allow further and more comprehensive analysis of the emergence of 

anthropogenic fire regimes from combinations of fire use, suppression and policy. The next two 

Chapters now describe the use of DAFI to build a global agent-based model of anthropogenic fire use 

and management.
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Towards a global behavioural model of anthropogenic fire: 
the spatiotemporal distribution of land fire systems 

 

The following chapter was published in Socio-Environmental Systems Modelling (Perkins et al., 2022). 

Therefore, here, an introduction frames the Chapter in the context of overall thesis objectives and 

wider analysis presented. The published paper follows below. Figures and tables in the published 

paper are referred to below and elsewhere in this thesis as “4.x” for clarity. Sections in the published 

paper are referred to as “4.2.x”. 

 

4.1 Chapter introduction 

4.1.1 Published paper in the context of this thesis 
The previous chapter described DAFI, the database of anthropogenic fire impacts. This new database 

provides the empirical basis for global-scale behavioural modelling of anthropogenic fire use and 

management. The next two chapters now present the Wildfire Human Agency Model (WHAM!), a 

new and global behavioural model of anthropogenic fire use and management. This is the first of 

those two chapters.  

Analysis of DAFI demonstrated that differing modes of anthropogenic fire use have contrasting 

quantitative characteristics and are closely linked to the underlying logic of differing land use systems 

(Chapter 3, Section 3.3.3). Furthermore, analysis of DAFI also shows how landscape level 

characteristics of anthropogenic fire regimes (for example, the wildland urban interface, or the 

presence of community fire governance) emerge from combinations of land system type and their 

wider socio-ecological environment (Chapter 3, Section 3.3.4).  

Therefore, the first step towards developing a global model capable of capturing these contrasting 

patterns of anthropogenic fire use and management was to model their underlying land system 

drivers so that they could be projected spatially and temporally. As such, this Chapter quantitatively 

defines, and then projects the global distribution of, land fire systems (LFS). These land fire systems 

are derived from the meta-analysis framework given in Table 3.1. Indeed, 12 of the LFS are directly 

analogous to categories in this initial framework. However, during DAFI analysis, it became clear that 

an additional category of land use system – a non-extractive land use system – was required to 

capture the full diversity of human fire use and management (Table 4.1 in the published paper).

Chapter 4 
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The non-extractive land use system was needed was for several reasons. Firstly, the initial framework 

presented in Table 3.1 did not capture Pyne’s 1st (pre-human) fire (Pyne 2001); this lightning ignited 

regime was necessary to include for those regions of the world where human influence remains 

limited (Jacobson et al., 2019). Secondly, many of the land users in the ‘forestry’ category in the 

initial framework occupy a diversity of natural and semi-natural landscapes in addition to forest 

landcovers. For example, in 75 of 92 cases of fire use by the conservationist AFT in DAFI, the 

landcover burned was either grassland or shrubland (mixed grass and forest). The same was true of 

hunter-gatherers, for whom 91 of 133 cases of fire use related to grasslands and shrublands.  

Therefore, with the addition of non-extractive land uses, the resulting LFS framework had 16 

categories (Table 4.1), which formed the basis of the land use distribution engine presented. These 

16 categories had a very close relationship to the eventual set of agent functional types (AFTs) in 

WHAM! (presented in Chapter 5, Table 5.3). 

 

4.1.2 Model evaluation: an overview 
As noted above, WHAM! is presented across Chapters 4 & 5, whilst Chapter 6 presents the offline 

coupling of WHAM! with JULES-INFERNO. Each of these chapters contains evaluation of the 

respective model components they present. Here, a summary of model evaluation measures is given 

(Table 4A). Model evaluation protocols can provide clarity around the purpose and scope of 

evaluation steps conducted for complicated environmental models (Grimm et al., 2014). Brown et al., 

(2023) propose an evaluation protocol (named LUC-TRACE) specifically for spatial land use models, 

and hence their terminology is adopted here. Broadly, four categories of evaluation procedures are 

conducted. The first of these is ‘goodness-of-fit’ – assessment of how well the model fits data used in 

its construction. Secondly, ‘output corroboration’ (commonly ‘validation’) compares model outputs 

with independent data. Thirdly, model benchmarking compares performance with alternative 

modelling approaches. Fourthly, sensitivity analysis assesses the impact of model parameters on 

outputs.  

Model performance metrics selected are those most commonly adopted as evaluation measures for 

the process in question. Hence, for goodness-of-fit assessment, r2 is used for regression and the area 

under the received operated curve (AUC) is used for classification (Steyerberg et al., 2010). For 

overall performance, the FIREMIP used pearson’s r and overall global burned area in Mha 

(Teckentrup et al., 2019); to allow direct comparison of results with the FIREMIP ensemble, these 

measures are adopted here as well.  

The published paper describing the spatiotemporal distribution of LFS is now presented, followed by 

a brief section (4.3) placing findings from the paper in the context of the overall thesis.
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Table 4A: Overview of evaluation of WHAM!. Evaluation in Chapter 4 focuses on the land 

fire system (LFS) distribution, Chapter 5 evaluates parameterisations of anthropogenic fire 

use and management, particularly for managed fire, whilst Chapter 6 evaluates all aspects of 

WHAM! including unmanaged fire and fire suppression. 

 

Thesis 

section WHAM! process evaluated Data or null model used Evaluation metrics 
 

4.2.3.2 
 

LFS distribution: goodness-of-

fit 

 

DAFI data 
 

AUC 

4.2.3.2 LFS distribution: 

benchmarking 

Null model: multinomial 

regression 

AUC 

4.2.3.3 LFS distribution: output 

corroboration 

HANPP (Haberl et al., 

2014) 

Distribution of HANPP by 

AFR 

5.3.1.2 Managed fire: goodness-of-fit DAFI data AUC & r2 

5.3.1.3 Unmanaged fire & fire 

suppression: goodness-of-fit 

DAFI data AUC & r2 

5.3.3.1 Managed fire: sensitivity 

analysis 

N/A Burned area response to 

parameter perturbation 

(Mha) 

5.3.3.2 Crop residue burning: output 

corroboration 

GFED5 crop fires (Hall et 

al., 2023) 

Correlation coefficient (r) 

5.3.3.3 Managed fire: output 

corroboration 

Unseen DAFI data  Correlation coefficient (r) 

5.3.3.4 Managed fire: output 

corroboration (temporal trend) 

LIFE database (Smith et 

al, 2022) 

Binary assessment of 

temporal trend 

6.3.1.2 Combined burned area: 

benchmarking 

Null model: INFERNO 

v1.0 offline 

Correlation coefficient (r); 

Burned area (Mha) 

6.3.3.2 Combined burned area: 

output corroboration 

GFED5 (Chen et al., 

2023) 

Correlation coefficient (r); 

Burned area (Mha) 
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4.2 Published paper 
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Abstract 
Landscape fire regimes are created through socio-ecological processes, yet in current global models the 
representation of anthropogenic impacts on fire regimes is restricted to simplistic functions derived from coarse 
measures such as GDP and population density. As a result, fire-enabled dynamic global vegetation models 
(DGVMs) have limited ability to reproduce observed patterns of fire, and limited prognostic value. At the heart of 
this challenge is a failure to represent human agency and decision-making related to fire. This paper outlines 
progress towards a global behavioural model that captures the categorical differences in human fire use and 
management that arise from diverse land use objectives under varying socio-ecological contexts. We present a 
modelled global spatiotemporal distribution of what we term ‘land-fire systems’ (LFSs), a classification that 
combines land use systems and anthropogenic fire regimes. Our model simulates competition between LFSs with 
a novel bootstrapped classification tree approach that performs favourably against reference multinomial 
regressions. We evaluate model outputs with the human appropriation of net primary production (HANPP) 
framework and find good overall agreement. We discuss limitations to our methods, as well as remaining 
challenges to the integration of behavioural modelling in DGVMs and associated model-intercomparison 
protocols.  
 
Keywords 
Fire; DGVM; behavioural model; HANPP 
 
Code availability 
Supplementary material, including model code & outputs, as well as data used to produce our results, are made 
freely available via Figshare under an MIT open-source licence: https://doi.org/10.6084/m9.figshare.c.5523840. 
Code is also shared on Github for convenience: https://github.com/OliPerkins1987/Fire_GBM. 
 

 

1.  Introduction 

In the Anthropocene, landscape fire is best understood as a coupled socio-ecological process, driven by complex 
interactions between biophysical and socio-economic factors (Pausas and Keeley, 2019; Kelley et al., 2019). For 
example, the Amazonian fires of 2019 were caused by a combination of international trade conflict between the 
USA and China (Fuchs et al., 2019; Taheripour et al., 2019) and national-scale political change (Stewart et al., 
2020), but also a regional drought (Dong et al., 2021). Although much debate has focused on such destructive 
fires, and in particular so-called ‘mega-fires’ (e.g., Adams et al., 2020; Pliscoff et al., 2020), humans continue to 
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use fire as a management tool for diverse purposes across land systems (Smith et al., 2022; UNEP, 2022). For 
example, fire is used to rejuvenate pastures and deter pests in livestock systems (Kull, 2004; Jakimow et al., 
2018), to prepare fields and dispose of residues in agriculture (Van Vliet et al., 2012; Liu et al., 2019), to manage 
fuel loads in fire prone environments (Laris, 2002), and as a weapon in land tenure disputes (Suyanto et al., 
2004). 
 
Human approaches towards fire suppression are similarly diverse – spanning industrial fire suppression and 
exclusion (Silva Sande et al., 2010) to traditional fire knowledge and community fire practice amongst indigenous 
populations (Mistry et al., 2005), to the growing ‘pyro-diversity’ narrative amongst conservationists (Bowman 
et al., 2016). Humans also have multiple indirect impacts on fire regimes – by altering fuel loads through logging 
and grazing (Cochrane, 2009; Archibald, 2016), by fragmenting landscapes with roads and croplands (Archibald 
et al., 2012), and by draining peat swamps (Page and Hooijer 2016).  
 
In each case above, fire regimes emerge from a combination of local land use objectives, policy goals and wider 
economic developments playing out in the landscape. Furthermore, although climate attribution studies have 
found that climate change increases the likelihood of weather patterns associated with extreme wildfire events 
(Goss et al., 2020), multi-faceted human impacts on global fire regimes entail that the direct relationship 
between climate change and fire remains poorly quantified (van Oldenborgh et al., 2020; IPCC 2022). 
 
In this context, it is perhaps unsurprising that the first Fire Model Intercomparison project (FIREMIP) found 
simplistic approaches to representing anthropogenic impacts on fire are a substantial shortcoming in dynamic 
global vegetation models (DGVMs; Teckentrup et al., 2019). Current approaches to modelling anthropogenic fire 
are limited to analytic functions derived from GDP and population density data (Teckentrup et al., 2019). As a 
result, representations of human activity were found to be both the largest single cause of disagreement 
between burned area outputs of different DGVMs, and between model outputs and remote sensing 
observations (Forkel et al., 2019). Not only do current DGVMs have limited ability to reproduce observed 
patterns of fire use, but they also have little predictive power, as they do not represent the underlying processes 
that drive human-fire interactions (Rabin et al., 2015, 2018).  
 
This paper contributes to improving this situation by presenting progress on behavioural modelling of 
anthropogenic impacts on wildfire regimes at the global scale. Importantly, this work incorporates the 
underlying land-system processes that drive human-fire interactions (Pyne 2001; Lauk and Erb 2016) by 
characterising the categorically different anthropogenic fire use and suppression systems that emerge under 
differing land use systems and socio-ecological contexts. Specifically, we present a novel approach to modelling 
the global spatiotemporal distribution of what we term ‘land-fire systems’ (LFSs) from 1990 to 2014. Our LFSs 
are derived by combining classes of land use systems and anthropogenic fire regimes (AFRs), each of which are 
discussed and defined below (Section 2.1).  
 
With LFSs defined, we take a novel approach to model their spatial and temporal distribution by combining a 
suite of classification trees and a simple simulation of competition. As anthropogenic fire is closely linked to land 
use (Archibald 2016; Andela et al., 2017), we evaluate our approach with indicators from the human 
appropriation of net primary production (HANPP) framework. HANPP, which is derived from data independent 
to our model, provides a multi-dimensional, spatially explicit and functional view of human-ecosystem 
interactions (Haberl et al., 2014; Gingrich et al., 2015). 
 
Our spatiotemporal modelling of LFSs is an important step towards defining and spatially allocating agent 
functional types (Arneth et al., 2014) in a global model of anthropogenic fire impacts. We anticipate a close, 
though not exact, relationship between our LFSs and agent functional types. Our ultimate intention is for this 
model of anthropogenic fire impacts to be coupled with the JULES-INFERNO fire-enabled DGVM (Best et al., 
2011; Mangeon et al., 2016). This eventual goal informs several choices regarding model development, from 
spatial resolution to our choice of forcing data sets. These restrictions and their implications for future modelling 
are addressed in the discussion. 
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2. Methods 

Modelling the spatiotemporal distribution of land-fire systems (LFSs) involved several steps (Figure 1). First, we 
drew on the global Database of Anthropogenic Fire Impacts (DAFI; Perkins et al., 2021; Perkins and Millington 
et al., 2021a) to define each LFS through a combination of theory and empirical data (sections 2.1, 2.2). Second, 
we sourced appropriate secondary data sets as independent variables to drive the model (section 2.2). Third, 
we assessed the representativeness of data in DAFI (section 2.3.1) and weighted these data to address sampling 
biases. Fourth, using this weighted data, we developed a single classification tree for each LFS (section 2.3.2, 
2.3.3). Fifth, the output probabilities of these trees were used to drive a simple representation of competition 
for land (section 2.3.4). Finally, model outputs were evaluated against land use efficiency data from the HANPP 
framework (section 2.4). 
 

 
Figure 1: Overview of methods used in this paper to define and evaluate a global land-fire system  distribution function. DAFI 
is the Database of Anthropogenic Fire Impacts, HDI is the Human Development Index, PET is potential evapotranspiration, 
HANPP is the Human Appropriation of Net Primary Production.   
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2.1  Definition of land-fire systems 

Land use systems are defined based on land use intensity and land management practices (Foley et al., 2005; 
Václavík et al., 2013). For example, Dou et al. (2021) classified 24 land systems across Europe distinguishing 
high-, medium- and low-intensity use of forests, arable lands and grasslands (among others). We extend this 
concept and define land-fire systems (LFSs) as the fire use and management practices that emerge from a 
combination of local land user objectives and wider socio-cultural attitudes towards fire. Specifically, we use a 
conceptual framework that cross-references land use systems with ‘anthropogenic fire regimes’ (AFRs) to define 
and categorise global LFSs (Table 1).  
 
We consider three primary land uses that dominate land systems globally – forestry, livestock and crops – in 
addition to a combined ‘non-extractive’ (recreational, residential or conservationist) land use system. Our AFRs 
are classified based on previous work that identifies differences in fire practices dependent on industrialisation 
and attitudes towards fire (e.g., Pyne, 2001; Seijo & Gray, 2012; Lauk & Erb 2016). These AFRs are: 
  
• Pre-Industrial – active use of fire and limited mechanisation in land management; 
• Transition – adopting elements of both pre-industrial and industrial regimes; 
• Industrial – fire use replaced by mechanisation and chemical fertilisers;  
• Post-Industrial – deliberate or unintentional re-introduction of fire to a landscape as an ecological process.  
 
By cross-referencing AFRs with land use systems, the LFSs produced are categories of distinct fire- and land-
management strategies that represent human behaviour and can be applied globally. 
 
 
Table 1: Land-fire systems (LFSs) conceptualised as a combination of four land use systems (LUSs) and four anthropogenic fire 
regimes (AFRs). Italics give exemplar papers describing the activities and fire regimes of each LFS. 

 LUS 

 AFR Non-Extractive Forestry Livestock Crops 

Pre-Industrial Unoccupied  
N/A 

Hunter-Gatherer 
Fowler & Welch, 
2018 

Pastoralism 
Solomon et al., 2007; 
Johansson et al., 2019 

Swidden 
Araki, 2007; 
Jakovac et al., 2017 

Transition Limited or Contested 
Management 
Sletto 2008; de Torres 
Curth et al., 2012 

Logging 
Nepstad et al., 1999; 
Dennis et al., 2001 

Extensive Ranching 
Eloy et al., 2017; Jakimow 
et al., 2018;  

Small-Holdings 
Kumar et al., 2015; 
Liu et al., 2019 

Industrial Pyro-Exclusion 
Pavleichik & Chibilev 
2018; Suhs et al., 2020  

Managed Forests 
Kalies et al., 2016; 
Steen-Adams et al., 
2017 

Intensive Ranching 
Taylor, 2003; Bendel et 
al., 2020 

Intensive Farming 
McCarty et al., 
2009; Hall et al., 
2016 

Post-Industrial Pyro-Diversity 
Govender et al., 2006; 
Fernandes et al., 2016 

Abandoned 
Gomez-Gonzalez et 
al., 2018 

Abandoned or Subsidised  
Hadjigeorgiou et al., 
2011; Varela et al., 2018 

Abandoned 
MacDonald et al., 
2000; Dara et al., 
2019 

 

2.2  Materials used 

Our method for modelling the global spatiotemporal distribution of LFSs is empirical, using data from a recently 
completed and first global database of anthropogenic fire impacts (DAFI; Perkins et al., 2021; Perkins and 
Millington 2021a). Currently, DAFI comprises 1809 case studies from 504 academic papers, government and 
NGO reports. As previous work has emphasised the central role of land use in anthropogenic impacts on fire 
(Andela et al., 2017), DAFI presents data on anthropogenic fire use, suppression, and policy within its underlying 
land use context. Data on the distribution of LFSs in DAFI therefore provided the dependent variables for our 
modelling. DAFI is freely available online (Perkins & Millington, 2021a). 
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DAFI data were combined with secondary data sets, which were used as independent variables in subsequent 
models (Table 2). Our initial choices for independent variables began with data found to be valuable in modelling 
global patterns of land use by Malek and Verburg (2020). We augmented these initial choices with factors likely 
to be important for determining fire use. Additional variables were primarily those that could capture the ‘dual-
constraint’ hypothesis of the biophysical drivers of fire (Krawchuk et al., 2009). Specifically, we used net primary 
production to capture cases where a lack of vegetation leads to a lack of fuel for fires to burn - ‘the fuel 
constraint’ - and potential evapotranspiration to capture cases where fuel is too wet to burn - ‘the moisture 
constraint’. Data for both of these variables were drawn from the JULES DGVM (Best et al., 2011) to facilitate 
later integration of our model outputs.  
 
Additionally, given the importance of politics to fire use and management (Carmenta et al., 2017, 2019), we also 
experimented with the ‘Human Freedom Index’ (Cato Institute, 2020). This was identified as a possible candidate 
to capture the relative importance placed on individuals’ subsistence livelihoods or societal economic 
development within policy frameworks. Finally, as DAFI revealed that biodiversity conservation is a substantial 
driver of anthropogenic fire use (Perkins et al., 2021), data on the location of protected areas (UNEP-WCMC, 
2020) and species’ richness (IUCN, 2015) were included as possible predictors of the distribution of AFRs in non-
extractive land use systems. A detailed overview of the pre-processing of secondary data sets that was 
conducted is given in Supplementary Material A; the resulting processed data sets are made available as 
Supplementary Material B. 
 
 
Table 2: Overview of secondary data sets used as predictor variables in this study. Only variables used in the final model are 
shown. All data were resampled to the resolution of JULES-INFERNO (1.875o x 1.25o). 

Variable type Variable name Spatial resolution Temporal range Source 

Socio 
economic 

Population density 0.04o 2000-2020 CIESIN, 2017 

Gross Domestic Product 0.08o 1990-2015 Kummu et al., 2018 

 Human Development Index 0.08o 1990-2015 Kummu et al., 2018 

 Market access+ 0.08o 2000 (1990-2015) Verburg et al., 2011) 

 Human impact mask 1km2 2016 Jacobson et al., 2019 

Land cover & 
Land use 

Fractional land cover 
(anthropogenic) 

0.25o 1990-2020 Hurtt et al., 2020 

 Land cover composition 
(natural) 

1.875o x 1.25o 1990-2020 Clark et al., 2011 

Biophysical Potential evapotranspiration 1.875o x 1.25o 1990-2014 Best et al., 2011 

 Ecosystem net primary 
production 

1.875o x 1.25o 1990-2014 Clark et al., 2011 

 Topography 30m N/A Van Zyl et al., 2001 

Key: + single year of data extrapolated to other years from other secondary data (see Supplementary Material A). All data sets 
have an annual temporal resolution. 

 
 

2.3  Global distribution of land-fire systems 

Before using DAFI as the basis of our model, we first assessed the global representativeness of these data. 
Weights were then applied to address any sampling biases in DAFI (section 2.3.1). Using these weighted data, 
the determination of the distribution of each LFS was done in two parts (Figure 2). The first part in the fractional 
allocation of cells to each LFS was to divide each grid cell (1.875o x 1.25o; section 2.3.1) of a global raster map 
into the fractional coverage of each land use system. This was done using a combination of prescribed inputs 
and classification tree models (section 2.3.2). The second part was to allocate the fractional coverage of each 
AFR within each land system present in the cell. This was done using classification trees trained with predictor 
variables from secondary data sets sampled at the locations of DAFI case studies, and the LFS recorded in DAFI 
as the target variable (section 2.3.3).  
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Figure 2: Process of allocating a grid cell proportionally by land-fire system (LFS) through the combination of land use systems 
(LUSs) and anthropogenic fire regimes (AFRs). All AFRs were distributed using the classification tree method set out in the 
main text, whilst the fractional coverage of LUS was determined through a combination of external forcing and inter-system 
competition. The fractions of a grid cell occupied by crops (C) and livestock farming (L) were determined from forcing data 
(Hurtt et al., 2020). Forestry (F) and non-extractive (N-E) LUSs were determined through a combination of JULES-INFERNO 
plant functional type outputs and statistical functions (see sections 2.3.2 & 2.3.4). The unoccupied fraction (Un) was 
determined by a classification tree, as with the AFRs, whilst the urban fraction (Ur) was also driven by CMIP6 forcing data. All 
fractional coverage was non-spatial within a cell. 

 

2.3.1  Data representativeness check and weighting 

The first potential source of bias in DAFI was the imbalance of the database towards few studies that reported 
results relating to the same LFS from multiple sites in close proximity. This imbalance is reflected in the large 
difference between the median and maximum number of locations reported in a single source (1 and 84 
respectively). For example, Araki (2007) reported fire use in shifting cultivation across 51 different villages in the 
Muchinga region of Zambia. Although this information is valuable for understanding variability in anthropogenic 
fire use, concentrations of case studies in localised areas could skew results at the global extent. Therefore, four 
locations were randomly sampled when a source reported data from more locations (for the same LFS in the 
same country) than the overall mean number per source (3.7). Additionally, case studies that reported policy or 
other information at the country level were excluded as they likely lacked spatial specificity. Consequently, from 
an initial set of 1809 case study locations, 1170 were used for modelling. 
 
The global representativeness of the chosen 1170 case studies from DAFI were assessed by comparing the 
distribution of values for the human development index (HDI) and potential evapotranspiration (PET) at 
locations for DAFI case studies against their respective global distributions. HDI was chosen to represent the 
availability of social and economic resources as it is focused on the fundamentals of human development across 
the broad base of a population (UN, 2020). Furthermore, HDI was chosen over GDP as fire is often conceptualised 
as a land management strategy used in the absence of alternative industrial tools such as machinery (Carmenta 
et al., 2019; Cammelli et al., 2020). PET was used as a proxy for the ‘dual-constraint’ hypothesis (Krawchuk et 
al., 2009), which describes the global biophysical variation in fire regimes. 
 
To conduct this comparison, values of the reference variables were sampled from raster grids at the locations 
of DAFI case studies (Table 2). As our eventual goal is to work with the JULES-INFERNO DGVM, secondary data 
were first aggregated to that model’s coarse resolution for global runs: 1.875o x 1.25o. The means of the 
distributions in DAFI were found to be substantially different from the global values (t-tests: all p < 0.0001; Figure 
3). The source of bias is that DAFI oversamples data from fire-prone areas - where anthropogenic fire use is more 
likely - and from economically poorer areas - where people have tended to use fire because other land 
management approaches are unavailable.  
 
Therefore, a process of ‘raking’ (Lovelace et al., 2015) was used to weight DAFI such that it more closely reflected 
the global distributions of HDI and PET. First, the 25th, 50th and 75th percentiles of the global distributions of 
HDI and PET were calculated. Each DAFI case study was then allocated to a quartile of the global distribution for 
the two reference variables. Where DAFI was found to over- or under-sample a particular quartile of the global 
distribution, data were down- or upweighted. For example, if 27.5% (respectively 22.5%) of DAFI case studies 
were in the second quartile of the global PET distribution, then those case studies would receive an PET weight 
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of 0.909 (respectively 1.11). The weights for HDI and PET were multiplied together to produce a final case study 
weight. Trimming thresholds were applied at values of 0.7 and 3 to avoid excessive emphasis being placed on a 
single data point (Elliot, 2008).  
 
The central tendency of the weighted data was found to approximate the global distribution of HDI (t-test:  
p = 0.47). For PET, a bias persisted as areas of very low evapotranspiration (principally the Northern Boreal Forest 
and Arctic Circle) remained under-sampled. These areas have very low human impacts on fire regimes, and when 
they were excluded, the distributions had converged acceptably (t-test; p = 0.82). This process was repeated for 
each of our four land use systems.  For each land use system, the global values of HDI and PET were filtered to 
include only cells that contained >1% of the land use system in question, and this subset of the data was 
compared against DAFI case studies containing an LFS from the relevant land use system. Similar results were 
achieved at the land system level as for the data overall (t-tests: all p > 0.05). These weighted data formed the 
basis of subsequent modelling. 
 
 

 
Figure 3: Distribution of data in the database of anthropogenic fire impacts (DAFI) by quartile of two reference variables, 
potential evapotranspiration (ET), and the human development index (HDI). DAFI oversamples low HDI (poorer) locations 
where anthropogenic fire is a dominant land use strategy and higher ET environments, which are more likely to be more fire 
prone. LQ, LMQ, UMQ, UQ refer to lower, lower middle, upper middle and upper quartiles. Dashed line represents an equal 
proportion of values across quartiles. 

 

2.3.2  Modelling the spatiotemporal distribution of land use systems  

To ensure our model outputs could be consistently integrated with JULES-INFERNO, we needed to consider the 
two ways in which land cover types are defined in the DGVM. First, the distribution of vegetation within ‘natural’ 
ecosystems is calculated based on competition between plant functional types (PFTs; Harper et al., 2016). 
Second, the presence of anthropogenic land systems (currently crops, livestock farming and urban) is 
determined through prescribed inputs. These inputs to JULES-INFERNO are currently typically the standardised 
land cover inputs for the CMIP6 (Coupled model intercomparison project simulations; Hurtt et al., 2020). CMIP6 
was the standardised model protocol that informed climate projections for the IPCC AR6 (Eyring et al., 2016). 
JULES-INFERNO then only allows grass PFTs to occupy anthropogenic or ‘disturbed’ portions of a grid cell (Burton 
et al., 2019). Therefore, for the land use system component of our LFS distribution modelling, the fraction of 
each grid cell covered by crops, pasture, rangeland, and urban areas were taken directly from the CMIP6 forcing 
data. In these forcing data, Hurtt et al. (2020) divided grazing lands into planted pastures and ‘rangelands’ (semi-
natural grasslands). We assumed that livestock land use systems dominated in both land cover types. The 
consequences of this division for model outputs are discussed in section 4.3.   
 
The remaining fraction of the grid cells were then allocated between forestry, non-extractive land uses, and 
‘unoccupied’ – the absence of any human land management. To do this, classification trees were used (Krywinski 
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and Altman, 2017). Classification trees have been widely applied in agent-based modelling (Rounsevell et al., 
2012) - their advantages include simplicity and an ability to represent categorically different behaviours. For the 
classification trees allocating non-extractive and forestry land use systems, the target variable was the 
respective land use system in DAFI. However, given that DAFI does not include case studies without at least one 
anthropogenic fire impact, it could not form the basis of the ‘unoccupied’ model. Therefore, the dependent 
variable for the ‘unoccupied’ model was the ‘very low (anthropogenic) impact areas’ defined by Jacobson et al. 
(2019). The full process used for defining the classification tree models is presented in section 2.3.3. 

2.3.3  Modelling the distribution of anthropogenic fire regimes 

Multinomial regression has frequently been used for statistically-derived distribution of land use/cover types 
(e.g. Millington et al., 2007; Lin et al., 2014). Here, we adopted an alternate approach based on a suite of 
classification tree models, in which a classification tree was defined for each LFS (Figure 4). The principal benefit 
of this approach was that it allows the socio-ecological niche of each LFS to be defined individually, and for that 
niche to be evaluated both quantitatively and relative to our understanding of process. For example, although 
soil composition and hydrology may play a role in determining the suitability of a given region for intensive 
agriculture (Malek and Verburg, 2020), including this as a variable across our LFSs risks making it a proxy for the 
trend towards lower economic development in tropical regions. Because only a sub-set of independent variables 
need be included in a given tree, the effect of these variables can be separated from each other, and isolated to 
where they are warranted from a process perspective. Our approach therefore substantially reduces multi-
collinearity concerns. Furthermore, grounding the foundations of the model in both empiricism and process 
should make future projections robust.  
 
Some LFS had few (< 20) instances in DAFI, meaning that several AFRs accounted for less than 10% of cases in 
some land use systems. This risked the classification-tree algorithm returning a null tree predicting all absence 
cases, which is little use for our modelling purposes. Therefore, for each LFS, a training set was developed with 
50% presence and 50% absence cases of the relevant LFS. Absence cases were up-sampled to the number of 
presence cases in the initial training data and 20% of the resulting data were first held back as a testing set. On 
this training set, an initial process of variable (or ‘feature’) selection was conducted to identify viable predictor 
variables. In this process an initial tree was learned against the training set with no restrictions on the number 
of nodes it contained. This was then ‘pruned’ based on misclassification of data points, to identify a simpler 
model, less prone to out-of-sample prediction variance due to overfitting (Mingers et al., 1989). The pruned 
trees were then evaluated against the testing set, to assess trade-offs between parsimony and predictive 
accuracy.   
 
As classification trees are known to be sensitive to small changes in the training data (Krywinski and Altman 
2017), bootstrapping of the training data is commonly employed to improve the stability of their out-of-sample 
prediction. In machine learning algorithms such as the random-forest, an ensemble of differing tree structures 
then forms the final model (Breiman, 2001). However, given our goal is to build a global, process-based 
behavioural model, we wanted to avoid the lack of interpretability associated with random-forests (Haddouchi 
and Berrado, 2019) and thereby to ensure each of our trees were robustly grounded in process. Therefore, 
rather than using bootstrapping to develop an ensemble of tree structures, we used it to identify the most robust 
single structure across samples.  
 
Having conduced an initial variable selection, therefore, we made 1000 bootstrap samples of the full data set 
used for variable selection – the training and test data with equal proportions of presence and absence cases 
(section 2.3.1). Using a subset of variables defined during variable selection, a classification tree structure was 
learned on each sample and pruned to the level identified as robust against over-fitting during variable selection. 
From these 1000 trees, the most frequent tree structure was identified and chosen as a final model. In some 
cases, two variables formed the initial model split approximately 50% of the time. In these instances, 
convolutions of variables were attempted to define a single variable that consistently formed the first split. For 
example, HDI was multiplied by the logarithm of GDP for the Small-Holdings (transitional crop) LFS and the single 
resulting HDI-GDP hybrid variable was subsequently found to be valuable in seven other cases.  
 
In addition to defining a resilient tree structure, the added advantage of our approach is that it creates a 
numerical distribution of values for the thresholds and output probabilities of a tree, based on their values for 
each bootstrapped sample. This allows a degree of data and sampling uncertainty to be captured and expressed. 
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For this study, we took 100 random deviates for each set of tree split thresholds and their associated output 
probabilities and present this as a quantification of parameter uncertainty.  
 
The process described above created a single classification tree structure per LFS, where each split in the tree 
was given a numerical distribution and each node an associated set of output probabilities. The outputs of each 
classification tree are best interpreted as the probability that a given LFS is the dominant type in the fraction of 
a grid cell occupied by the relevant land use system. This allows, for example, that Swidden (i.e. pre-industrial 
crops) and Managed Forests (i.e. industrial forestry) could be the dominant LFS in their respective land use 
fractions of a single model cell.  

2.3.4  Simulating competition between LFS 

To produce maps of the fractional coverage of each LFS in each model grid cell we take a two-step process 
(Figure 2). The first step of combining the outputs of individual classification trees was to assign fractional 
coverage of each grid cell to each of our four land use systems (Figure 2b). Crop, pasture, rangeland and urban 
areas were derived directly from CMIP6 land cover (Hurtt et al., 2020). The remaining vegetation area was then 
allocated based on outputs of classification trees for forestry, unoccupied and non-extractive areas of a cell. 
Forestry was calculated as: 

          𝐹𝑜𝑟𝑒𝑠𝑡𝑟𝑦𝑖 = 𝑇𝑟𝑒𝑒𝑐𝑜𝑣𝑒𝑟𝑖 ∗ (1 − 𝑁𝑜𝑛𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑖) ∗ (1 − 𝑈𝑛𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑𝑖 )   (1) 

 
Where  𝐹𝑜𝑟𝑒𝑠𝑡𝑟𝑦𝑖  is the proportional allocation of the ith grid cell to forestry. The remaining area covered by 
grass, shrubs and trees falling outside human land use was allocated between unoccupied and non-extractive 
land systems. This was done by summing the output probabilities of their two respective classification trees and 
dividing by the total. For example, the fraction of the ith grid cell allocated to non-extractive land uses was 
calculated as:  

        𝑁𝑜𝑛𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑖 = 𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛𝑖 ∗
𝑁𝑜𝑛𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑖  

𝑁𝑜𝑛𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑖 +  𝑈𝑛𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑𝑖  
         (2) 

 
where 𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛𝑖  is the fraction of the grid cell not allocated to extractive land uses. Having allocated each 
grid cell fractionally between land use systems, LFS distribution within each corresponding grid-cell fraction was 
then calculated (Figure 2c). This was done by representing ‘competition’ between LFSs using output probabilities 
of the trees for each AFR: 

                                                 𝐴𝐹𝑅𝑖𝑗 =
𝑝(𝐴𝐹𝑅𝑖𝑗) 

∑ 𝑝(𝐴𝐹𝑅𝑗)⁄                                        (3) 

 
where 𝐴𝐹𝑅𝑖𝑗  is the fractional coverage of the ith AFR in the jth cell, and 𝑝(𝐴𝐹𝑅𝑖𝑗) and ∑ 𝑝(𝐴𝐹𝑅𝑗) are the 

probability of the classification tree for the ith AFR and for all AFRs respectively.   
 
Before calculating the fractional coverage by AFR using equation (3), a threshold (θ) of 0.1 was applied: output 
probabilities from a given classification tree less than this threshold were set to 0. The θ parameter was applied 
to prevent very small output probabilities for a given AFR from influencing LFS distributions inappropriately. This 
occurs because we used simple tree structures to avoid overfitting, and so the smallest output probability of a 
given tree was typically 0.05-0.1. For example, the Swidden LFS could be projected to occupy a small-fraction of 
cropland in the intensive USA corn belt (where such a land management strategy simply does not exist). This θ 
value will eventually become a free parameter when this model is coupled with JULES-INFERNO. After applying 
equation (3) to classification tree outputs, the relevant AFR and land use system fractions were multiplied 
together to produce LFS fractions within each cell.  

2.4  Model Evaluation 

Model outputs were evaluated in two ways. First, the classification-tree based approach set out above was 
compared against a reference (and more parsimonious) multinomial regression approach using the area under 
the ROC curve or ‘AUC’ – a standard measure of classification accuracy (Melo, 2013). To ensure a fair 
comparison, one multinomial regression was fit per land use system. A brief description of the multinomial 
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model is available as Supplementary Material F. Second, model outputs were compared against independent 
data in the form of global maps of Human Appropriation of Net Primary Production (HANPP; Kastner et al., 
2021).  
 
HANPP is a measure of the intensity of land use. It quantifies the extent of human domination of an ecosystem 
and therefore also provides a measure of land use as a planetary boundary to socioeconomic development 
(Vitousek et al., 1997; Running, 2012; Haberl et al., 2014). The HANPP framework has been used to analyse long-
term trajectories of land systems (Krausmann et al., 2012, 2013), disentangle processes of area change, 
intensification and efficiency gains (Gingrich et al., 2015), and understand impacts on biodiversity (Haberl et al., 
2005) and other ecosystem services (Mayer et al., 2021). HANPP quantifies the effects of land use and land-
cover conversions (HANPPluc), as well as of biomass harvest (HANPPharv) on terrestrial net primary production 
and is thus a multi-dimensional indicator for land-use intensity (Erb et al., 2013).  
 
The ratio between HANPPharv and HANPP gives the fraction of appropriated biomass that can be used for 
human purposes related to the overall land-use pressure on ecosystem productivity. The resulting metric – 
HANPP efficiency (HANPPe) – provides a measure of land use efficiency. HANPPe has been shown to be useful 
to depict land-use transitions, in particular from the agrarian to the industrial mode of subsistence (Fetzel et al., 
2014; Niedertscheider et al., 2014). While production increases in agrarian societies tend to rely on expansions 
of existing land-use practices, and thus result in a stable HANPPe, industrialisation-based production increases 
are usually associated with increases in plant productivity that result in strong, often sudden, increases in 
HANPPe.   
 
Here, we use global maps of HANPP to derive HANPPe for 1990, 2000 and 2010 (Haberl et al., 2007; Kastner et 
al., 2021). The compilation of these maps relied on the integration of census statistics (FAOSTAT, 2021) with 
information on potential ecosystem net primary production derived from a model run with the LPJ-GUESS DGVM 
(Smith et al., 2014) assuming a hypothetical no-land-use situation. Therefore, HANPP calculations were based 
on separate data from those used to develop the LFS distribution, with the exception of the land-use information 
which were derived from related CMIP6 and Hyde data sets (Goldewijk et al., 2017; Ellis et al., 2020; Hurtt et al., 
2020). Model evaluation using HANPPe focused on the crop land use system, where HANPPe dynamics are most 
pronounced. Therefore, cells with less than 10% cropland in the CMIP6 land cover data were excluded from 
evaluation. Since HANPPe should increase with industrialisation, we expected HANPPe to increase from pre-
industrial, to transitional, to industrial crop LFS.  

2.5  Model simulations and code 

We ran our model from 1990-2014. These years represent the beginning of the time-period covered by DAFI 
(1990) and the end of CMIP6 historical simulation runs (2014) respectively. Analysis code to create tree 
structures is written in R version 4.0.1. Principal packages used were ‘tree’ version 1.0.4 (Ripley, 2019) for 
classification trees and ‘tidyverse’ version 1.3.0 (Wickham et al., 2019) for data manipulation and processing. 
Code to integrate tree models into a cohesive simulation is written in Python 3.8, using the ‘Agentpy’ framework 
version 0.0.1 (Formatti, 2021). Code is made available as Supplementary Material C and Github (Perkins and 
Millington, 2021b). 
 

3.  Results 

3.1  Model outputs 

Overall, our model suggests that in 2014, 54.15% of the Earth’s land surface was in either transitional or 
industrial fire regimes (Figure 4). By contrast, just 9.37% of the planet was occupied by the pre-industrial AFR 
and 12.70% was occupied by the post-industrial AFR. The largest shift globally between 1990 and 2014 was an 
increase in industrial and post-industrial AFRs. The Industrial AFR grew from 22.47% of the global land surface 
in 1990 to 27.61% in 2014 (Figure 5). This increase was predominantly driven by an increase in the industrial 
crops LFS. The industrial crops LFS increased from 40.20% to 50.70% of cropland area globally (Figure 6). There 
was a smaller increase in the industrial livestock LFS, which increased from 31.95% to 35.00% of livestock land 
use systems globally. This picture of increased land use intensity is complemented by unoccupied areas of the 
land surface decreasing from 23.23% to 17.78% over the study period.  
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By contrast, the largest change in non-extractive LFSs was the increase of the post-industrial AFR (‘Pyro-
Diversity’), which grew by 6.69%. However, the industrial (‘Pyro-Exclusion’) AFR also grew by 4.48% in the non-
extractive land use system. Furthermore, the distribution of AFRs within the non-extractive land use system was 
more static than in extractive land use systems. In 1990, the four non-extractive AFRs occupied between 20.93% 
and 29.54%, whilst by 2014, this range had changed only to 16.12% to 32.05%.  
 

 
Figure 4: Fractional coverage of the global land surface by anthropogenic fire regime (AFRs) in 2014. The transition and 
industrial AFRs form the largest share of global land surface coverage.   

 
 

 
 
Figure 5: Fractional coverage of global land surface by anthropogenic fire regimes (AFRs) from 1990-2014. Shading represents 
95% confidence interval around the mean, derived from bootstrapped numerical distribution of classification tree thresholds. 
The largest change in AFR distribution is an increase in the industrial AFR, accompanied by declines in the pre-industrial AFR 
and unoccupied areas.   
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Figure 6: Change in global land-fire systems (LFSs): A) distribution of anthropogenic fire regimes (AFRs) in the cropland and 
non-extractive land use systems through time and B) AFR by Continent. Together, model outputs point to a substantial increase 
in the intensive crops LFS in Asia and South America. The accompanying decline in shifting cultivation (pre-industrial crops) is 
particularly acute in Asia. The increase in post-industrial regimes, particularly in Europe and North America, points to land 
abandonment, but also the growth of ‘pyro-diverse’ land management strategies (Fernandes et al., 2016). 
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Beneath this global picture, there is substantial regional heterogeneity. For example, at the continental level, 
whilst the pre-industrial AFR decreased from 17.24% to 10.50% in Asia across the study period, the pre-industrial 
AFR remained broadly static in Africa (18.64% to 16.95%). By contrast in Europe and North America, a prevailing 
trend is the growth of the post-industrial AFR, which increase from 11.48% to 17.47% in Europe and 20.21% to 
26.40% in North America. The decline in unoccupied area was most sharp in South America - from 26.37% to 
18.13% of the land surface - reflecting rapid deforestation of the Amazon. A complete set of model outputs, 
including maps for all years and LFSs, are made available as Supplementary Material E.  

3.2  Overview of model performance 

When compared to reference multinomial regression models, the classification tree approach demonstrates a 
slight improvement in quantitative performance. On average the classification trees achieve an AUC of 0.018 
higher than the multinomial models (Table 3). Classification trees perform particularly well for livestock and non-
extractive systems. Management practices in these systems have been found to drive substantial differences in 
fire regimes at both landscape and global scales (Bird et al., 2012; Rabin et al., 2015). Therefore, the classification 
trees’ improved performance in these land use systems will support robust projections of anthropogenic fire 
use and suppression when coupled with JULES-INFERNO.   
 
 
Table 3: Model performance of classification tree approach in comparison with reference multinomial regressions. Values are 
mean area under the ROC curve (‘AUC’), weighted by the number of DAFI case studies in each land use system. Although the 
better performance of the classification tree approach is modest in a purely quantitative sense, the approach also captures a 
more nuanced view of process that should aid the credibility and interpretability of future forecasts. 

Land use system Multinomial Classification trees 

Crops 0.807 0.785 

Livestock 0.742 0.761 

Forestry 0.899 0.915 

Non-extractive 0.729 0.785 

Overall 0.794 0.812 

 
 
Additionally, the classification tree approach captures a wider range of socio-ecological processes compared to 
the multinomial models (Figure 7): the most robust multinomial fits contained HDI and market access as 
independent variables (Table 4). By contrast, the classification trees are derived from a final set of seven 
independent variables, and therefore capture important inter-relationships between socio-economic and 
ecological factors that enable improved performance in critical areas (Figure 8). For example, the spatial 
distribution of the pre-industrial livestock LFS (‘Pastoralism’) is found to be concentrated towards higher altitude 
regions with less socio-economic development. As pastoralism is typically found in more marginal and 
sometimes harsher environments, such a parameterisation is consistent with prior knowledge of the process 
(Saladyga et al., 2013; Easdale and Aguiar, 2018).  
 
 
Table 4: Mean regression coefficients for the reference multinomial models. The industrial anthropogenic fire regime (AFR) 
was taken as a reference (zero values for all coefficients). Taken together, the model is indicative of a linear progression 
through the four AFRs in step with economic development. HDI is the human development index. 

AFR  Intercept HDI Market access 

Pre-industrial  11.495 -18.085 -1.261 

Transition 9.236 -15.254 11.486 

Post-industrial -5.524 5.149 9.307 
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Figure 7: Relationship of model outputs to predictor variables. A) Frequency of variables as primary or subsequent splits in 
classification tree models, and B) relationships of global fractional land surface coverage with the HDI & GDP hybrid variable 
(by anthropogenic fire regime (AFR)  for 2014 model output). Economic factors, represented by HDI & GDP as well as market 
access, dominate classification trees and play a substantial, though not exclusive, role in driving AFR distribution. Biophysical 
factors represented by potential evapotranspiration and ecosystem net primary productivity provide important second and 
third order effects, highlighting the socio-ecological dynamics at the heart of anthropogenic fire impacts. 
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Figure 8: Selected land-fire system (LFS) classification trees: A), pre-industrial livestock (‘Pastoralism’), B) post-industrial non-
extractive (‘Pyro-Diverse’), C) industrial crops (Intensive Farming). D) shows model performance for each compared to 
reference multinomial models. These trees illustrate how the approach enables representation of interactions between socio-
economic and ecological factors in the models. In A) both economic development and the more fertile conditions associated 
with lower altitude (DEM) serve to constrain the system. Conversely, in B) the combination of comparatively more prosperous 
and populated areas and lower NPP are conducive to the system (and at very high NPP, moisture can limit the ‘natural’ role 
of fire; McWethey et al., 2013). The intensive crops LFS (C) is found in wealthier areas, and also areas in the developing world 
where the hydrological cycle permits appropriate conditions for intensive agriculture. In two of three cases, capturing the 
additional ecological process leads to improved area under the ROC curve (AUC; D).   

 
 
Similarly, the presence of the post-industrial non-extractive (‘Pyro-Diverse’) LFS is found not only nearer to 
wealthier cities, but also outside of very high NPP environments – where fire does not play a substantial ‘natural’ 
role in the ecosystem and so its use in biodiversity conservation is not as widely adopted (e.g., Barnett et al., 
2016). By capturing the details of these processes, the classification tree approach achieves an average AUC 
0.038 greater than the multinomial models for these particular LFSs (Figure 8d).  
 
Finally, the Intensive Farming LFS is found to be influenced not only by socio-economic development, but also 
by PET in the classification tree approach. Specifically, at very high PET, intensive farming becomes much less 
likely. This may reflect the poorer soil quality typically found in such regions (Sanchez et al., 2003), mirroring 
findings of Malek and Verburg (2020). However, for this LFS, the reference multinomial (with a purely 
socioeconomic approach) performs better (AUC 0.845 vs. 0.787). This is addressed further in the Discussion. A 
complete set of classification trees used to define the distribution of LFSs is presented in Supplementary Material 
D.   

3.3  Model evaluation 

Overall, there is good agreement between model outputs and HANPPe (Figure 9). For example, in 2010, the pre-
industrial crops LFS (Swidden) has mean area weighted HANPP efficiency (wHANPPe) that is 41.68% lower than 
the industrial crops LFS and 36.67% lower than the transition crops LFS. This pattern is repeated in both 1990 
and 2000. Likewise, there is a similar, but smaller proportional increase in wHANNPe from the transition to 
industrial cropland LFS of 33.15% in 1990. However, the relative increase from transition to industrial AFRs 
decreases to just 7.78% in 2010. The trend is driven by increases in wHANPPe in eastern China, a region where 
wHANPPe has increased rapidly, but which remains in the transitional crops LFS (Small-Holdings) in model 
outputs (Figure 10). This temporal trend towards convergence in wHANPPe between the transition and 
industrial cropland LFS is assessed further in section 4.2. 
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Figure 9:  HANPP efficiency weighted by fractional cell coverage for the three productive crops land-fire systems. In all cases, 
mean HANPP efficiency increases in line with increasing land use intensity, although this trend becomes weaker between the 
transitional and industrial anthropogenic fire regimes through time. Metrics give mean and quantiles of the respective 
distributions.   

 
Figure 10: Drivers of converging HANPP efficiency (HANNPe) between crops land-fire systems (LFSs). A) Dominant cropland 
land fire-system in cells with > 10% cropland coverage & B) change in HANPPe between 1990 & 2010. Very large increases in 
land use intensity are reflected in increased HANPPe in China, but much of these areas remain within the transitional LFS 
(‘Small-Holdings’) in model outputs.   
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4.  Discussion 

4.1  Contribution to modelling of socio-ecological systems 

Our approach using a new conceptualisation of land-fire systems (LFSs) with classification trees represents an 
important step forward in modelling the impacts of human behaviour on global fire regimes. The use of 
classification trees is (modestly) quantitatively better than multinomial regression (Table 3, Figure 8), and 
produces a similar degree of predictive accuracy as other models of human behaviour at a global scale (e.g. land 
use change; Malek and Verburg, 2020). Furthermore, using an ensemble of classification trees, our approach 
provides two additional key benefits in underpinning a robust process-driven model.  
 
First, the approach enables explicit representation of socio-ecological processes, such as the relationship 
between net primary production and the emerging ‘pyro-diversity’ land management perspective. Because we 
have a unique tree for each of our defined LFSs, we can isolate these effects to where they are warranted from 
a process perspective. The specificity of the role of different independent variables in our approach should also 
improve the prognostic value of future predictions: we will be confident that any feedbacks diagnosed in coupled 
model runs are based on observed processes and not spurious collinearity effects. Conversely, the reference 
multinomial models suggest a linear progression through AFRs from pre-industrial to post-industrial. Specifically, 
the pre-industrial AFR is typified by low HDI and market access, the transition AFR by low HDI but high market 
access, the industrial AFR by high HDI but low market access, and the post-industrial AFR by high values for both 
predictor variables (Table 4). Such a linear conceptualisation has been criticised in the context of anthropogenic 
fire use for not capturing the nuance and diversity of how humans use and manage fire in diverse contexts 
(Coughlan and Petty, 2012).  
 
Second, our results show that the classification tree approach can represent systematic change within land 
systems, identified as a grand challenge in socio-ecological systems’ modelling (Elsawah et al., 2020). This can 
be seen in Figure 7 in which a clear threshold effect is seen in the industrial crops LFS at HDI-GDP ~6.5. However, 
our model is also able to reproduce more gradual change thanks to the bootstrapped distributions we apply to 
the threshold values in each tree. In the context of coupling our model with JULES-INFERNO, this represents a 
substantial advantage over multinomial regression, which would be more limited in projecting land systems’ 
responses to changes in socio-ecological circumstances. An example benefit of this nuance is that our model 
reproduces the noted rapid decline of swidden agriculture in Asia simultaneous with swidden’s persistence in 
much of sub-Saharan Africa (Figures 6 & 10; Van Vliet et al., 2012).   

4.2  Evaluation of model outputs 

The overall agreement between our model and independent data for the empirically-derived HANPPe measure 
(Haberl et al., 2007) establishes the credibility of the model outputs, particularly for delineating between the 
pre-industrial crop LFS and the industrial crop LFS (Figure 9). More fundamentally, the alignment between our 
LFS modelling and the HANPPe measure of land use intensity strengthens the case for a tight link between land 
use and anthropogenic fire. However, the apparent convergence of HANPPe in transitional and industrial AFRs 
from 1990-2010 warrants further exploration.   
 
In eastern China, we observe large increases in HANPPe, but model outputs to 2014 continue to place much of 
this region in the transitional crops LFS (Figure 10). Case studies in this region were assigned the transitional 
crops LFS in our model input data (i.e., DAFI) not on the basis of yields, but because they are areas of widespread 
burning of crop residues in arable regions (e.g. Sun et al., 2019). Indeed, residue burning in many parts of Asia 
has become so widespread as to have a substantial negative impact on air quality (Peng et al., 2016; Sembhi et 
al., 2020). This is indicative of a lack of cohesive fire management, and hence is classified in the transition AFR. 
By contrast, in the industrial crops LFS, residue burning is typically absent due to concerns around public health 
that drive legislation to restrict or ban it (Smil, 1999). To some degree, this tension may be resolved through the 
assignment of agent-functional types to our LFS. For example, Malek et al. (2019), identified distinct market-
oriented and subsistence-oriented small-holder land user types. We may find that such a sub-division in our 
Small-Holding LFS, to create a market-oriented small-holder agent class, would better represent high-yielding 
farming with limited associated management of fire use.  
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Fundamentally, however, the observed tension points to the nature of transitions in the land system – with 
multiple and often concurrent factors leading to varied, lagged, and non-linear responses in the system (Brown 
et al., 2018). More longitudinal and location-specific research is required to understand the drivers of change in 
fire practices and land use intensity and efficiency and the degree to which they are related.  

4.3  Future modelling challenges 

Two primary challenges in the modelling presented here relate to available data and the intended future 
coupling to existing models. Firstly, although the creation of global spatially disaggregated HDI and GDP data 
(Kummu et al., 2018) has been important in our ability to model the spatiotemporal distribution of LFSs, we also 
made multiple simplifications to our representation of human behaviour due to data constraints and concerns. 
Secondly, our focus on coupling with the JULES-INFERNO DGVM caused us to lose a degree of information, not 
only by working at JULES-INFERNO’s coarse spatial resolution (1.875 x 1.25 degrees), but also by refraining from 
using data sets that would have conflicted with JULES-INFERNO outputs yet otherwise may have added value to 
the model. These two related issues are now discussed further, in turn. 
 
Due to a lack of data, the primary simplification important for modelling global anthropogenic fire is the absence 
of an explicit representation of policy. This must be considered a substantial limitation as the inherently political 
nature of fire governance determining who can use fire, for what purpose and when, is often a proxy battle for 
the favoured land system and land tenure type in a given location (e.g., Kull, 2004; Trigg et al., 2012). To account 
for this, we initially experimented with the ‘Human Freedom Index’ (Cato Institute, 2020) as a measure of the 
degree of centralisation of a government system. However, this was dropped from the analysis, primarily 
because of concerns regarding the neutrality of the index (Plehwe, 2021). Furthermore, as we plan to use this 
model for future scenario-based projections, we were concerned that making projections about such an index 
for the shared socio-economic pathways (SSPs; Popp et al., 2017) would be an inherently subjective process. 
 
Therefore, a representation of government policy will need to be defined through theory in combination with 
information on fire policy (such as that gathered in DAFI). However, such a top-down parameterisation of policy 
impacts on the land system will need to be careful not merely to mirror or double effects already captured 
implicitly in existing data. For example, the consequences of political efforts to eradicate swidden in Southeast 
Asia (Mertz et al., 2009) are already seemingly captured in our empirical modelling. This question of circularity, 
and the degree to which empirical and strictly behaviourally-driven model components may be combined in a 
coherent manner will likely only become clear once coupling with JULES-INFERNO is completed and assessed.  
 
A further data-related simplification made during model construction was to remove variables representing 
species richness and the distribution of protected areas. These variables were moderately useful in defining the 
distribution of non-extractive AFRs but would have added substantial challenges to scenario forecasting – likely 
requiring complex assessments and calculations of future anthropogenic impacts on biodiversity globally. 
Together, these data issues reiterate the argument of Verburg et al. (2019) that a lack of future projections in 
land system modelling and its underlying data sets remains a major challenge.   
 
A second set of challenges in our approach is found in our planned model coupling with the JULES-INFERNO 
DGVM. As we plan for our model to be used in model runs following the CMIP6 protocol, we adopted the CMIP6 
land cover data as the primary driver of our land use system distribution (Figure 2). The consequences of this 
are perhaps most pronounced for the livestock land use system. One positive outcome was that pastoralism 
could be restricted to the ‘rangeland’ land cover class, as by definition this nomadic LFS cannot occur on 
managed pastures. However, a substantial resulting issue is the representation of land abandonment. For 
planted pastures, coherence demands the rate of abandonment must be driven by declining fractional coverage 
in the land cover data. Conversely, in rangelands, abandonment can occur without substantial change to land 
cover (Peco et al., 2006). Therefore, in this case abandonment need not be dictated from forcing data and can 
be represented behaviourally. Indeed, the post-industrial AFR for rangelands was among the best performing 
aspects of the model (AUC = 0.862).  
 
This tension in the relationship of CMIP6 land cover data with our land use systems points to similar structural 
challenges for modelling of future scenarios. Although CMIP6 land cover data for the recent past are derived 
from observations, for future scenarios they are based on Integrated Assessment Model  outputs (Hurtt et al., 
2020). Therefore, future projections from our model will be somewhat reliant on the assumptions of Integrated 
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Assessment Models to drive the distribution of land systems, whilst the distribution of AFRs will be driven 
entirely by our behavioural approach. This may cause issues with the coherence of future scenarios but is a 
necessary issue to tackle if behavioural modelling is to be integrated into the coupled model intercomparison 
project and associated protocols. Furthermore, by separating concerns between land use system distribution 
and AFR distribution, our modelling approach should be readily adaptable for modellers interested in other 
discrete aspects of anthropogenic land use such as water consumption or biogeochemical cycling.  
 
Finally, to allow seamless transmission of information between our models, we adopted JULES-INFERNO outputs 
as synthetic data sets for NPP and PET. However, data derived from remote sensing and field observations may 
have been preferable. This limitation may be at the heart of our model’s modest performance in predicting the 
industrial crops LFS. Although Malek and Verburg (2020) used soil type to capture the biophysical constraint on 
such intensive or market-oriented production, including such a data set in our model would have involved 
substantial enhancements to the ways in which JULES-INFERNO represents changes to soil biogeochemical 
composition due to agriculture (Osborne et al., 2015; Burton et al., 2019). Recognising this, and to ensure our 
model is readily integrable with other DGVMs, we plan to create a version of the model using only remotely-
sensed (empirical) inputs.   
 

5.  Conclusion 

We have presented a new approach to modelling the global distribution of land use systems and their inter-
relationship with anthropogenic fire regimes, through the concept of land-fire systems (LFS). Our spatiotemporal 
modelling of LFS distributions is an important step towards a substantial improvement in the representation of 
anthropogenic fire in dynamic global vegetation models. We have demonstrated how a reasonably simple 
empirical approach can capture complex non-linear interactions in land systems whilst being derived from just 
seven independent variables (with corresponding data sets). However, a major implication of this study is that 
effective large-scale behavioural land system modelling under the shared socio-economic pathways will require 
development of standardised and spatially disaggregated data sets, with associated future projections, across a 
range of socio-ecological indicators.   
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4.3 Conclusion: published paper findings in the context of this thesis 
The published paper composing the core of this Chapter has presented the land use module of a 

global behavioural model of anthropogenic fire use. This is based on a simple, empirical 

representation of land use competition between land-fire systems (LFS). As the results of the paper 

show, the approach used coheres well with the human appropriation of net primary production 

(HANPP) and performs favourably against a baseline multinomial regression.  

The following Chapter will show how the spatiotemporal LFS distribution formed the basis of a global 

model of human fire use and management. This model is now named WHAM! – the wildfire human 

agency model. 

In developing the LFS distribution, it became clear that drawing on a range of human indicators in 

addition to population density and GDP was crucial to capturing the socio-ecological niches of the 

differing LFS. As such, running WHAM! for the future required new spatial projections of human 

indicators for the Shared Socioeconomic Pathways (O’Neill et al., 2017). Projections of the Human 

Development Index and market access are therefore presented in Chapter 6, Section 6.2.5.   
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A global behavioural model of anthropogenic fire use and 
management: parameterisation & evaluation of WHAM! 

 

5.1 Introduction 

5.1.1 Chapter outline 
The previous chapter described how a global distribution of land-fire systems (LFS) was defined from 

a combination of DAFI and secondary data. This chapter now describes how this LFS distribution was 

used to drive a global behavioural model of human impacts on wildfire regimes, which we name 

WHAM! (Wildfire Human Agency Model). The ultimate aim of this model is to form a component of a 

coupled model with the JULES-INFERNO dynamic global vegetation model (DGVM; Mangeon et al., 

2016). That coupling is described subsequently in Chapter 6, while this chapter describes WHAM! and 

its outputs as a standalone model. 

This Chapter begins by noting key considerations in model construction to enable coupling with 

JULES-INFERNO, before describing how a distribution of agent functional types (AFTs; Arneth et al., 

2014) was derived from the distribution of LFS. These AFTs are subsequently parameterised for fire 

use and management actions. Model evaluation is done using a combination of literature and remote 

sensing sources, with a focus on comparison of model outputs for crop residue burning with the new 

Global Fire Emissions Database v5 crop fire product (GFED; Hall et al., 2023). Discussion focuses on 

insights from WHAM! regarding the relationships of human fire use to their land use drivers, as well 

as model limitations and priorities for future development. 

Chapter 5 
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5.1.2 Coupling WHAM! with JULES-INFERNO: key considerations 
From the perspective of model structure, the goal of coupling WHAM! with JULES-INFERNO is to 

replace INFERNO’s simplistic functions representing human ‘ignitions’ and suppression of fires 

(Chapter 2, Section 2.2.1), with explicit representation of the modes through which people use fire 

and manage fire regimes (Figure 5.1; Table 5.1). In version 1.0 of INFERNO described by Mangeon et 

al., (2016), anthropogenic ignitions (𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑠𝐴) are calculated as: 

              𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑠𝐴 = 6.8 × 𝑃𝐷−0.6 ×  0.03 × 𝑃𝐷         (5.1) 

where 𝑃𝐷 is population density. This equation is not derived from the underlying processes by which 

humans use or manage fire, rather it is a top-down function calibrated to give broadly the same 

distributions of fire numbers observed in GFED v4 (Pechony and Shindell, 2009). 

DAFI data demonstrate not only that coarse-resolution Earth observation fire products (such as GFED 

v4) do not capture the majority of human fire globally, but also that anthropogenic fires have 

different quantitative characteristics (size, frequency, land cover burned) according to land user 

intentions. Therefore, WHAM!-INFERNO will replace this single anthropogenic ignitions function with 

a more mechanistic representation of the processes which drive human fire use globally, by 

projecting not only human ignitions, but three classes of human fires. These are: managed fires, 

unmanaged fires and escaped fires – the latter being those that begin as managed fires but grow to 

become unmanaged (Figure 5.1). 

 Similarly, INFERNO uses a further function of population density to define the fraction of these 

ignitions that are supressed:    

𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 7.7 × (0.05 + 0.9 × 𝑒−0.05𝑃𝐷)        (5.2) 

where 𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 is a 0-1 value representing the number of ignitions that are extinguished before 

they light a fire. The constant 7.7, as with the constant 6.8 in (1), is an empirical scaling factor used 

to calibrate model outputs to GFED v4. Similarly to anthropogenic ignitions, in WHAM!-INFERNO this 

empirical suppression function will be replaced by process-based representations of human fire 

extinguishing. Note that in DGVMs, anthropogenic fire ‘suppression’ commonly refers to 

extinguishing of active fires, whilst DAFI treats suppression as a group of three specific actions: fire 

control, fire prevention and fire extinguishing (Chapter 3, Section 3.2.2.3). Here, for ease of 

terminology, fire suppression is used to denote fire extinguishing, whilst control and prevention are 

termed as fire management actions. 
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Figure 5.1: Schematic representation of the structural changes to INFERNO enabled by 

WHAM! integration. Rather than treating all fires as similar events, as in the original version 

of INFERNO, the WHAM! integration can differentiate between managed fires that and 

firesthat spread unmanaged according to biophysical drivers. 

 

Table 5.1: Overview of WHAM! outputs and respective units; burned area from unmanaged 

anthropogenic fires will be calculated by JULES-INFERNO as a part of a coupled model 

ensemble. The parameterisation of fire suppression is described in the following chapter.  

Variable Chapter Section Output units 

Managed fire 5.2.2  Burned area (fraction of grid cell) 

Unmanaged fire 5.2.4 Number of fires (km-2 year-1) 

Fire suppression 
(extinguishing) 6.2.2.2 Dimensionless (0-1) 
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As described in Chapter 4, the distribution of LFS was an important step towards a distribution of 

agent functional types (AFTs), which are representative classes of human land systems (Arneth et al., 

2014). In the Arneth et al., (2014) definition, AFTs are comprised of roles and behaviours. In WHAM!, 

the roles of the AFTs are comprised of the land use system and anthropogenic fire regime that they 

occupy. Their behaviours, which are described in detail in this chapter, are comprised of fire use and 

suppression actions. As such, the AFTs’ spatiotemporal distribution determines which fire use 

options are considered in a model cell, whilst the AFTs’ parameterised behaviours determine the 

degree of fire use and suppression given the cell’s specific socio-ecological conditions.  

As with the LFS distribution, several aspects of model design were driven by the intended coupling 

with JULES-INFERNO. As with the LFS distribution described in Chapter 4, WHAM! adopts the coarse 

spatial resolution of JULES-INFERNO (1.875º x 1.25º). Furthermore, JULES land cover outputs (Plant 

Functional Type distribution) are used – specifically tree coverage and bare soil coverage – where 

otherwise remote sensing data could have been used. JULES representation of anthropogenic land 

cover falls into cropland, pasture, and natural vegetation (grasses, trees, and shrubs) and hence this 

is how WHAM! fire use outputs are reported in this Chapter. Rangelands - semi-natural grassland 

grazing lands (Hurtt et al., 2020) - are treated by WHAM! as an anthropogenic land cover, but by 

JULES as a natural land cover (Sellar et al., 2020); the resolution of this discrepancy is described in 

Section 5.2.2.3. By contrast to this spatial alignment, the temporal resolution of WHAM! is 

determined by timescales of anthropogenic decision making (Arneth et al., 2014) and the availability 

of data in DAFI. As such, WHAM! runs at an annual timestep. 

Any evaluation of WHAM! as a standalone model is necessarily incomplete as unmanaged fire 

outputs require coupling with JULES-INFERNO to calculate burned area. Whilst crop residue fires 

could be compared directly with the new GFED5 crop fires product (Hall et al., 2023) other satellite 

burned area products were challenging to use, as these cannot differentiate between managed and 

unmanaged fire types without local-scale fieldwork. Consequently, model outputs for managed 

anthropogenic fire are evaluated against mixed data sources, including DAFI data not used in model 

calibration, but also the LIFE database compiled by Smith et al., (2022). Similarly, sensitivity analysis, 

counterfactual experiments and discussion focus on WHAM! managed fire outputs. The complete 

picture of managed, unmanaged and lightning fires is then presented and analysed in Chapter 6.  

WHAM! is written in Python 3.8. It was developed using the Agentpy library, version 0.2.0 (Foramitti, 

2021). Code and data to run the model, along with installation guidance, are available via Zenodo 

(Perkins et al., 2023a). 
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5.2 Methods 
As shown in Figure 5.1, WHAM! represents anthropogenic fire use, management and suppression. 

Fire use is comprised of managed fire use, and the deliberate or unintentional creation of 

unmanaged fires. The fire management behaviour represented is fire control (measures taken to 

ensure managed fires do not become unmanaged wildfires) and suppression behaviour represented 

is fire extinguishing (putting out of active fires). 

The managed anthropogenic fires represented in WHAM! are the central modes of anthropogenic 

fire identified through analysis of DAFI (Chapter 3). Unmanaged fires are calculated as a combination 

of accidental fire, managed fires that escape to become unmanaged wildfires (hereafter ‘escaped 

fires’), and arson – which is defined as in Chapter 3 as fire use as a deliberate weapon. Where fires 

are successfully managed – performing a land use purpose and then burning out or being 

extinguished - WHAM! calculates the burned area directly (Table 5.1). However, where fires were 

unmanaged (whether by design or by accident), WHAM! outputs a number of fires km-2 year-1, which 

will be passed to JULES-INFERNO to calculate their resulting burned area.  

Fire control is an internal calculation of WHAM! that influences the rate of escaped fire. Therefore, 

this is presented in this chapter. By contrast, the parameterisation and calculation of fire suppression 

(‘extinguishing’ in DAFI) is directly intertwined with JULES-INFERNO’s calculation of burned area from 

unmanaged fire. Therefore, the development and calibration of this aspect of WHAM! is presented in 

the chapter detailing the coupled model (Section 6.2.2.2). 

Model development is presented in several stages. Firstly, the finalisation and distribution of AFTs 

from the modelled distribution of LFS is described in Section 5.2.1. Secondly, the parameterisation of 

these AFTs using DAFI data for the central modes of anthropogenic managed fire identified in 

Chapter 3 is presented (Section 5.2.2). Thirdly, top-down constraints were placed on managed fire to 

account for sampling biases in DAFI (Section 5.2.3). Fourthly, unmanaged fires were modelled using a 

combination of ‘observer’ agents and landscape-level effects (Section 5.2.4). This includes calculation 

of fire control actions.  

Having presented the model’s structure and parameterisation, model evaluation, including an 

assessment of sensitivity is described in Section 5.2.5. Finally, a set of counterfactual experiments, 

which explore the drivers of managed anthropogenic fire are described in Section 5.2.6. 
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5.2.1 Finalisation and distribution of agent functional types 
 

5.2.1.1 Finalisation of AFT classes  

The first step in constructing the fire parameterisations in WHAM! was to finalise the preliminary AFT 

classes defined in Chapter 3. The preliminary AFTs were derived from the fire regimes of Pyne (2001) 

and land user meta-analyses such as that of Malek et al., (2019). This initial framework was refined 

iteratively during the database testing process described in Chapter 3 (Section 3.2.2) and the 

development of the land use module of WHAM! described in Chapter 4.  

Before parametrising the resulting AFTs in WHAM!, the AFTs were reassessed from a top-down 

perspective. The criteria used were whether AFT classes contained a clear modal fire use pattern, 

and whether they burned similar land cover types. These two criteria were assessed on both the 

frequency of given fire use & land cover combinations within an AFT class, but also whether they 

were separable geographically or from a qualitative and process-based perspective. There were two 

particularly areas of focus during this reassessment. 

Firstly, the identification of the non-extractive land system (Chapter 4) required revisiting of the 

preliminary forestry AFT classes. As a result, the ‘industrial forestry’ preliminary class was split into 

‘managed forestry’, which describes the industrialised management of forests to produce timber and 

associated goods, and ‘state land manager’. The state land manager class corresponds to bodies such 

as the US Bureau of Land Management, which manage large amounts of public lands, with not just 

forest but also grassland and other land cover types for multi-faceted purposes (Brice et al., 2020). 

For example, the difference between these two types is best seen in the primary land cover to which 

they applied fire for pyrome management: managed forestry burned exclusively forest (97.62%), 

whilst state land managers’ modal land cover burned was shrublands (52.78%). Managed forestry 

also used fire for burning of residues (36.20% of fire use cases), a behaviour that was absent from the 

state land manager class. 

Secondly, given that the LFSs were found to be a coherent framework for global modelling (Chapter 

4), cases where an LFS contained more than one AFT were a focus of reanalysis. Where an AFT 

occupied the same LFS as another, in all cases there was found to be a difference in that AFTs modal 

fire use (Table 5.2). As such, after a multi-stage iterative process, a final set of AFTs was identified. In 

12 of 16 cases there was a one-to-one relationship between LFS and AFT (Table 5.3). In the remaining 

five cases, multiple AFTs competed for the space within that LFS. 
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Table 5.2: Land-fire systems (LFS) which are allocated between more than one agent 

functional type (AFT). In all such cases the AFTs adopt a differing modal fire use, indicative 

of their substantively differing roles within each LFS. In the case of recreationalists, the 

transitional type tended to be an overseas tourist, whilst in the post-industrial case this 

tended to be local or national-scale activity.  

 

LFS AFTs Modal fire use 
Proportion of 
cases (%) 

Cropland, transitional 
Small-holder (Subsistence)  
Small-holder (Market) 

Vegetation clearance 
Crop residue burning 

48.70  
66.81 

Forestry, transitional 
Agroforestry  
Logging 

None 
Vegetation clearance 

86.05 
41.17 

Non-extractive, 
transitional 

Conservationist  
Recreationalist 

Pyrome management 
Hunter-gatherer 

97.62  
71.43 

Non-extractive, post-
industrial 

Conservationist 
Recreationalist 

Pyrome management 
Hunter-gatherer 

97.62  
71.43 

 

 

Table 5.3: Overview of relationships between final agent functional types (AFT) and land-fire 

systems (LFS). In 12 of 16 cases, there is a simple one-to-one AFT-LFS relationship. Cases 

where the relationship is not one-to-one (i.e., where there are multiple AFTs per LFS) are 

italicised.  

 

 AFR   Land Use  

   Non-extractive Forestry  Livestock  Cropland  

Pre-Industrial  Unoccupied Hunter-Gatherer Pastoralist Shifting cultivation 

Transition  

Recreationalist,  

Conservationist 

Logging, 

Agroforestry  
 

Extensive Livestock 

Farmer 

Small-holder 

(Subsistence), 

Small-holder (Market) 
 

Industrial  

State Land 

Manager Managed Forestry  
 

Intensive Livestock 

Farmer 
 

Intensive Farmer 

Post-

Industrial  

Conservationist, 

Recreationalist 

Abandoned forest 

plantation 

Abandoned livestock 

farming  Abandoned cropland  
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5.2.1.2 Distribution of AFTs 

In the 12 out of 16 cases in which there was a one-to-one relationship between LFS and AFT, the AFT 

distribution could be assigned directly from the LFS distribution calculated in Chapter 4. In the four 

cases where more than one AFT was competing for space within a LFS, competition between AFTs 

was simulated using the same process (with one small simplification noted below) as that for 

deriving the distribution of LFS themselves. 

Briefly to recap, a tree model was created which defined the fraction of the relevant LFS occupied by 

the competing AFTs. Training data for the tree models were the same weighted data from DAFI used 

in Chapter 4. To identify data for the relevant LFS, these were filtered by land system using the 

method in Chapter 4 but were additionally filtered for the relevant AFR using the case study 

assignment in DAFI. Therefore, rather than comparing the output probabilities of multiple trees in 

each pixel as in the competition between LFS, the fractional coverage of each AFT competing within 

an LFS could be assigned directly from a single tree’s output probabilities (Figure 5.2).  

 
Figure 5.2: Illustration of derivation of AFT distribution from distribution of land fire systems 

(LFS). Box represents a single theoretical model cell. In 12:16 cases an AFT could be 

allocated directly to an LFS (2a), whilst in the remaining four cases, this was done by 

simulated competition between AFTs. 
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5.2.2 Parameterisation of agent functional types for managed fire use 
 

Analysis of DAFI revealed seven central modes of global anthropogenic fire use (Chapter 3). Of these, 

six were treated as managed fire types (crop field preparation, crop residue burning, pasture 

management, hunting and gathering, pyrome management, and vegetation clearance), whilst arson 

was treated as unmanaged. As DAFI showed that these six managed fire use types have distinct 

spatial distributions and quantitative characteristics, each AFT was parameterised for their use of 

each type individually. The process used to parameterise AFTs for five of the managed fire types is 

set out in Figure 5.3 – vegetation clearance required a bespoke approach (Section 5.2.2.6). 

Furthermore, for some AFT / fire use combinations, deviations from the process outlined in Figure 

5.3 were required due to data availability, these are described below (sections 5.2.2.1-5.2.2.5). 

In the default parameterisation of AFT fire use, for each of five managed fire use types, each AFT was 

parameterised for their tendency to use fire for the given purpose (defined as a 0-1 probability), and 

where relevant the extent of their use (defined as a 0-1 burned area fraction of a model grid cell). 

Where no DAFI instances existed of a given AFT and a particular fire use, tendency was assigned a 

probability of 0. Fire use burned area fraction was calculated using case study data from DAFI. As 

DAFI case studies are both geographically small, and focused towards areas of active anthropogenic 

fire use (Chapters 3 & 4), using these alone as the basis for burned area fraction in a spatially coarse 

(1.875º x 1.25º) model would have led to overestimation of burned area. Consequently, 0-1 fire use 

tendency and 0-1 fractional burned area outputs were multiplied together to give a burned area 

fraction per cell for a given fire use (for the fraction of each cell occupied by a given AFT). This 

tension between fire data from comparatively granular case studies and the coarse resolution of 

JULES-INFERNO (and therefore WHAM!) is highlighted in model evaluation (Section 5.2.5) and 

explored in the discussion. 

Fire use tendency and burned area fraction maps were calculated statistically using classification and 

regression trees, generalised linear models (glms) and stacked combinations of both. These tools 

were chosen for their simplicity, interpretability, and complementarity. Broadly, glms were used for 

linear relationships (Haas et al., 2022), and tree models to capture non-linear or threshold effects in 

predictor variables (Krzywinski and Altman, 2017). Whereas data were plentiful for calculating the 

spatiotemporal distribution of each LFS, data availability for calculating fire use by AFTs were more 

limited, reflecting the underlying fragmentation and inconsistency of the anthropogenic fire 

literature; Chapter 3). Where data were most sparse, and/or where no meaningful statistical model 

could be constructed, a constant value was used. These cases are highlighted in sections 5.2.2.1-

5.2.2.5.  
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Figure 5.3: Overview of the process used to model managed anthropogenic fire in WHAM! 

This process was applied to each AFT for each mode of anthropogenic fire. Where an AFT 

had no recorded cases of a given fire use a probability of 0 was applied. Owing to data 

constraints, several deviations from this process were required, which are detailed in 

Sections 5.2.2.1-5.2.2.5. 
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In addition to cases in which no appropriate model could be found to capture the distribution of a 

given fire use / AFT, this sparsity of data led to two fundamental modelling challenges. The first 

related to calculation of fire use tendency, whilst the second challenge related to fire use rate.  

The first challenge was to correct for sampling biases in DAFI. As DAFI provides data on active fire use 

and suppression behaviours, it does not systematically capture the absence of fire use. Data on 

absence cases were collected incidentally, for example where a case study documented a well-

enforced policy ban (e.g. Abate and Angassa, 2016). As a result, only 13.7% of fire use records 

documented the absence of a particular fire use in a case study. Without appropriate adjustment, 

this inconsistent sampling of fire absence would have biased calculations fire use tendency. 

Therefore, absence data were resampled to form an equal portion of the training data for fire use 

tendency models. This is a standard approach in classification of ‘class imbalanced’ data, which has 

been shown to perform well in real-world applications (He and Garcia, 2009).  

Furthermore, as highlighted in Chapter 4, DAFI simply does not sample from locations where 

anthropogenic fire use would be a biophysical impossibility due to an absence of vegetation 

(primarily in deserts), and also systematically under-samples more economic developed regions of 

the world. Such systematic biases could not be corrected by resampling of DAFI. Therefore, in 

addition to up-sampling of absence cases, top-down constraints were applied to account for these 

two identified sampling biases in DAFI. Such top-down constraints are described in Section 5.2.3. 

Finally, where a constraint was required to capture a specific sampling bias relevant to a particular 

fire use type, these were added to the calculations at the AFT level. Fire use specific constraints are 

described in sections 5.2.2.1 – 5.2.2.5 below. 

The second modelling challenge presented by data sparsity was that the lack of standardised ways 

for reporting fire data in DAFI case studies. The result was burned area of managed fires could not be 

calculated using the same dependent variable for each fire use. For example, fire use for shifting 

cultivation was commonly reported as a fire return period (owing to the importance of fallow period 

for describing the system), whilst fire use for pyrome management was primarily reported as a 

burned area fraction in management plans or government reports. These issues were specific to each 

fire use type, and so the solution was to make best use of available quantitative fire data for each 

type. Burned area fraction was used as the dependent variable where data in DAFI allowed it, and 

where this was not possible the fire return period was used (as described below). 

Therefore, given the necessary heterogeneity of the methods used to parameterise differing AFT-fire 

use combinations, the specific adjustments made for each fire use are described in turn below. Table 

5.4 gives an overview of the adjustments to the default parameterisation approach set out above. 
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Table 5.4: Fire-specific amendments to parameterisations of managed fire by fire use type and agent functional type (AFT); the choice 

between tree models and linear models was based on their empirical performance. Where an AFT is not listed under a fire use, it was found 

not to use that mode of fire. The core method used for fire use parameterisation is set out in Figure 5.3.  

Fire use AFTs 
Fire use tendency: 
method 

Burned area: 
method 

Burned area:  
DAFI target variable 

Fire-specific 
constraint 

Crop field preparation Shifting cultivation Classification tree Regression tree Fire return period 

 
 
None 

Crop residue burning 

Small-holder 
(Subsistence) 
 
Small-holder (Market) 
 
Intensive arable farmer 

None 
 
None 
 
Classification tree  

Regression tree  
 
Regression tree 
 
Constant  

BA fraction 
 
BA fraction 
 
N/A 

 
 
None 
 
None 
 
None 

Hunter gatherer Hunter gatherer Classification tree Linear model BA fraction 

 
 
Section 5.2.2.5 

Pasture management 

Pastoralist 
 
Extensive livestock 
farmer 
 
Intensive livestock 
farmer 

Classification tree 
 
 
Classification tree 
 
 
Classification tree 

Regression tree 
 
 
Regression tree  
 
 
Constant  

BA fraction 
 
 
BA fraction 
 
 
N/A 

Section 5.2.2.3 
 
 
Section 5.2.2.3 
 
 
Section 5.2.2.3 

Pyrome management 

Conservationist 
 
Hunter gatherer 
 
Managed forester 
 
State land manager 

Classification tree 
 
Classification tree 
 
Classification tree 
 
Classification tree 

Linear model 
 
Linear model 
 
Constant 
 
Regression tree 

BA fraction 
 
BA fraction 
 
N/A 
 
BA fraction 

 
 
None 
 
None 
 
None 
 
None 
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5.2.2.1 Crop field preparation 

For crop field preparation, fallow length and therefore fire return period (FRP), is an important 

measure of the state and stability of a shifting cultivation system. FRP was much widely reported in 

DAFI (n = 263) than burned area fraction (n = 39) for swidden systems. Therefore, the dependent 

variable used for burned area modelling was FRP, which assumed to approximate the inverse of the 

burned area fraction.  

 

5.2.2.2 Crop residue burning 

Crop residue burning is a widespread practice amongst sedentary small-holder farmers (Chapter 3). 

This tendency was reflected in DAFI, in which just 29 of 297 crop residue burning records (10%) for 

arable small-holders were documented absences. As no meaningful relationships could be found 

between absence cases and independent variables, these absence cases were included in the single 

burned area model as burned area = 0. As a consequence, the resulting tree models for both 

subsistence-oriented and market-oriented smallholders each contained an output node where 

burned area fraction was < 0.1.  

Conversely, in the case of intensive farming, residue burning was a comparatively sparse practice: 15 

of 75 records were absence cases (20%) and only one case study reported a burned area fraction 

greater than 3%. Therefore, a fire tendency (Boolean) model was combined with a constant of 2.5% 

used to parameterise burned area. A value of 2.5% was chosen as it was the geometric mean of the 

data (2.47%); the geometric mean was used as the arithmetic mean was highly skewed by one case 

study where 85% of the cropland was burned in a sugarcane production system (McCarty et al., 

2009).  

 

5.2.2.3 Pasture management 

Two adjustments to the default fire parameterisation process were made for pasture management 

fires. Firstly, as with intensive arable farmers’ crop residue burning, a constant value was used for 

burned area calculations for intensive livestock farmers due to sparse data (n = 6) and, therefore, no 

meaningful relationships being found with predictor variables. Secondly, fire return period was used 

rather than burned area fraction to generate burned area maps for other AFTs owing to data 

availability.  
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Secondly, a more fundamental challenge was presented by the ‘rangeland’ land use class, which was 

a new inclusion in the CMIP6 land use & land cover data (Hurtt et al., 2020). In describing land use 

classes in the Hyde database v3.2 that were subsequently adopted by Hurtt et al., (2020), Goldewijk 

et al., (2017) define rangelands as extensively managed grazing lands comprising ‘natural grasslands, 

shrublands, woodlands, wetlands, and deserts (which) grow primarily native vegetation’. So, as 

rangelands occupy hugely differing biophysical niches, and in particular include arid and semi-arid 

regions, they could have greatly divergent livestock stocking levels and use of fire.  

A top-down constraint was therefore applied to livestock farmers occupying rangeland land covers to 

account for this potential large variation. This constraint was calculated by summing the raw 

competitiveness scores of the ‘active’ rangeland AFTs (pastoralist, extensive and intensive livestock 

farmers). Where these values summed to less than 1, this was interpreted as a lack of competition 

for land – and hence less densely stocked semi-natural rangelands. The adjusted rangeland burned 

area was therefore: 

 

𝑟𝑐 = min (1, ∑ 𝐴𝐹𝑇𝑟𝑎𝑛𝑔𝑒𝑙𝑎𝑛𝑑)                           (5.3) 

𝐵𝐴𝑟𝑎𝑛𝑔𝑒𝑙𝑎𝑛𝑑 = 𝐵𝐴𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘 ∗ 𝑟𝑐                             (5.4) 

 

where ∑ 𝐴𝐹𝑇𝑟𝑎𝑛𝑔𝑒𝑙𝑎𝑛𝑑 is the sum of the un-normalised competitiveness scores for the three ‘active’ 

rangeland livestock farming AFTs, 𝑟𝑐 is the rangeland occupancy constraint, and 𝐵𝐴 is burned area. 

Abandoned rangeland was not directly included in this calculation as it does not represent ‘active’ 

rangeland use.  

5.2.2.4 Pyrome management 

Pyrome management was perhaps the most diverse fire use, involving four different AFTs – hunter 

gatherer, state land manager, conservationists, and managed forestry. Two adjustments were made 

to the default process for fire use parametrisation. Firstly, the global mean was used as a constant 

(0.01) for the managed forestry burned area fraction owing to a lack of data; fire use tendency 

(probability of use) was calculated according to the default method. Secondly, owing to a lack of 

quantification of burned area fraction for the hunter gatherer AFT using pyrome management fire (n 

= 1), available data for hunter gatherers were combined with those for conservationists. This was 

done as, increasingly, conservationists and indigenous peoples are working together on fire regime 

management in fire prone regions (e.g. Neale et al., 2019; Ansell et al., 2020). 
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5.2.2.5 Hunting and gathering 

Fire use for hunting and gathering occurred across larger areas in grasslands and savannas (18.0% of 

land cover burned on average) than forests (6.7% of land cover burned). This in part reflects a 

difference in strategy between open hunting and gathering of non-timber forest products. As the 

simple land cover types used in DAFI could not be directly transplanted into JULES PFT types, a 

constraint based on the amount of tree cover in JULES PFT distribution was implemented. This was 

calculated as: 

                       𝐵𝐴𝐻𝐺,𝑡 =  𝐵�̂�𝐻𝐺,𝑡 ∗ 1 − (0.5 ∗ 𝑇𝑟𝑒𝑒𝑐𝑜𝑣𝑒𝑟𝑡)                          (5.5) 

 where  𝐵�̂�𝐻𝐺,𝑖is the burned area for hunting and gathering at time = 𝑡, and 𝑇𝑟𝑒𝑒𝑐𝑜𝑣𝑒𝑟 is the 

fraction of the cell covered by JULES tree PFTs.  

 

5.2.2.6 Vegetation clearance 

Parameterisation of fire for clearance of primary vegetation was complicated by the planned 

coupling with the JULES-INFERNO DGVM. This is because JULES takes land cover inputs of managed 

anthropogenic areas directly from CMIP6 land cover inputs (Sellar et al., 2020). Further, to allow 

WHAM! to be implemented within future model intercomparison projects it should operate within 

these common protocols and frameworks. Therefore, rather than seeking to model change in land 

cover directly – for example through AFTs demand for land, the cost of converting forest to 

agricultural lands or the impact of environmental legislation – we instead used the vegetation 

transitions specified by the CMIP6 land cover data (Ma et al., 2020). Using these pre-defined land 

cover changes between simulated time steps, we calculate the portion of newly cleared land 

occupied by each anthropogenic fire regime, and on this basis calculate the fraction of cleared 

(deforested) area that would have involved fire use. Due to a sparsity of data, WHAM! uses 

anthropogenic fire regimes, rather than AFTs.  

Further, as process that is frequently clandestine, vegetation clearance fire proved highly difficult to 

quantify in DAFI. Remote sensing data are widely available for the size of deforestation patches, but 

not for the specific amount of deforestation driven by differing actors and its relationship to fire 

(Chapter 3, Section 3.3.3.5). We therefore parameterise the ratio of deforested area to burned area 

for each AFR as free parameters; given the inherent resulting uncertainty, their impact on burned 

area is explored in model sensitivity analysis.  
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Initial values for these fire to deforestation ratios were sourced separately from DAFI data, using 

literature values as set out in Table 5.5. These are the r2 values from linear regression models 

describing the relationship between fire and deforestation under more extensively managed 

(transitional) and intensively managed (industrial) conditions. The ratio between fire and 

deforestation was assumed to be 1.0 for the pre-industrial AFR as by definition this AFR does not use 

machinery for land management (Chapter 3, Section 3.2.1). Furthermore, none of the AFTs for the 

post-industrial AFR would clear primary vegetation for extractive land use systems and associated 

land cover types so there is no ratio for these AFTs.   

 

Table 5.5: Ratio of burned area to total area of vegetation cleared used to parameterise 

vegetation clearance fire use. A ratio of 1.00 means all 100% of vegetation was cleared by 

fire use. 

 Anthropogenic fire 
regime 

Ratio Source 

Pre-industrial 1.00 

Ontological: the pre-industrial 
AFR does not make use of 
machinery 

Transitional 0.84 
 
Aragão et al., 2008 

Industrial 0.31 van Marle et al., 2017 

Post-industrial N/A 

 
No post-industrial AFTs cleared 
vegetation for extractive 
purposes 
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5.2.3 Top-down fire constraints on fire use  
In addition to the fire-use-specific constraints described above, two global constraints were applied 

to all anthropogenic fire uses – i.e. the seven modes of anthropogenic fire use described in DAFI, 

including arson. These were introduced to capture the impact of constraints or restrictions on fire 

use that were not captured fully in DAFI due to sampling bias (Chapter 4, Section 4.2.2.3.1). These 

two constraints were a vegetation constraint, and a dominant anthropogenic fire regime (AFR) effect. 

The vegetation constraint corrected for the lack of DAFI case studies in deserts and other very arid 

environments (Chapter 4, Section 4.2.2.3.1). This is similar to the use of the fraction of absorbed 

photosynthetically active radiation (FAPAR) as a vegetation constraint in the SIMFIRE model – a 

simple and empirical biophysical fire model (Knorr et al., 2014). The AFR constraint was needed as 

DAFI under-sampled places where fire use was absent in more developed contexts (Chapter 4, 

Section 4.2.2.3.1). From a process perspective, it aimed to capture the impact of imitation in fire 

management amongst land users and the impact of legal and other social barriers that prevent 

restrict managed fire use where fire restriction has become the dominant management paradigm 

(Chapter 2, Section 2.2.3).  

The vegetation constraint and its impact on burned area were calculated as: 

𝑉𝐶𝑡 = {
1  𝑖𝑓 𝑠𝑜𝑖𝑙𝑡  ≤ 𝑇𝑠𝑜𝑖𝑙      
1 − 𝑠𝑜𝑖𝑙𝑡  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}        (5.6) 

𝐵𝐴𝑡 =   𝐵�̂�𝑡 ∗ 𝑉𝐶𝑡                            (5.7) 

where 𝑠𝑜𝑖𝑙𝑡 is the bare soil fraction from JULES outputs at time = t; 𝑇𝑠𝑜𝑖𝑙  is a free parameter 

determining at what fractional coverage of soil in a cell the vegetation constraint should apply; 𝑉𝐶𝑡 is 

the vegetation constraint, and 𝐵�̂�𝑡 and 𝐵𝐴𝑡 are raw burned area from bottom-up AFT calculations, 

and burned area adjusted for the vegetation constraint. Similarly, the dominant AFR constraint was 

applied in model cells where the intensive AFR had the largest coverage of the four AFRs in that cell. 

It was calculated as: 

𝐴𝐹𝑅𝐶𝑡 = {
1  𝑖𝑓 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙𝑡  ≤ 𝑇𝐴𝐹𝑅     
1 − 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}       (5.8) 

𝐵𝐴𝑡 =   𝐵�̂�𝑡 ∗ 𝐴𝐹𝑅𝐶𝑡                                          (5.9) 

where 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙𝑡 is the fractional coverage of the Industrial AFR at time = t; 𝑇𝐴𝐹𝑅  is a free 

parameter determining at what fractional coverage the constraint should apply; and 𝐴𝐹𝑅𝐶𝑡 is the 

industrial AFR constraint. As a result of this process, the model gained two free parameters: the two 

critical thresholds at which the bare soil and dominant AFR constraints were applied. Methods for 

exploring the sensitivity of WHAM! outputs to its free parameters is explored in section 5.2.5.1.
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5.2.4 Unmanaged fire outputs 
 

5.2.4.1 Escaped fires 

As with managed fire use, escaped fire parameterisations were derived from data in DAFI. The 

starting point was the calculation of a baseline escape rate (the fraction of managed fires that 

become wildfires; Chapter 3, Section 3.2.2.2) for each of the six managed fire types described in 

Section 5.2.2 above. DAFI also contains data on the degree of control measures applied during 

managed fire use as a 0-3 ordinal scale. These data were used to parameterise the degree to which a 

given AFT would attempt to control a given fire use in each cell. This fire control parameterisation 

was used to adjust the baseline escape rate. Initial analysis showed there was a clear divide in 

outcome between no or little control (i.e. 0 or 1) and moderate or intensive fire control (ie.2 or 3; 

Table 5.6) So, the 0-3 ordinal scale for fire control was reduced down to a Boolean scale: 0-1 were 

grouped as no substantive attempt to control, 2-3 grouped as a substantive attempt to control. 

The result was in effect a Bernoulli random variable reflecting a meaningful attempt to control a 

given fire. This ‘fire controlled?’ variable was used, not to calculate the rate of fire escape with or 

without control measures, but rather the ratio of escaped fires with control measures to those 

without. This was because of the limited number of records in DAFI (n=3) that had reported values 

for all of a) number of fires per km2 for a particular fire use, b) the relevant fire control measures for 

that fire use, and c) the rate of escaped fires. Therefore, rather than a number of fires, the number of 

DAFI records of successfully managed and escaped fires for each fire use was used to calculate the 

impact of fire control measures. The rate of escaped fire for each fire use type and fire control 

present/absent was calculated as: 

𝑒𝑠𝑐𝑎𝑝𝑒𝑟𝑎𝑡𝑒𝑖
| 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑖 = 𝜌𝑖 ∗  

(∑ 𝑓𝑖𝑟𝑒𝑒𝑠𝑐𝑎𝑝𝑒𝑖
 | 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑖)

(∑ 𝑓𝑖𝑟𝑒𝑒𝑠𝑐𝑎𝑝𝑒𝑖
 | ! 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑖)

⁄  (5.10) 

𝑒𝑠𝑐𝑎𝑝𝑒𝑟𝑎𝑡𝑒𝑖
| ! 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑖 = 𝜌𝑖 ∗ 

(∑ 𝑓𝑖𝑟𝑒𝑒𝑠𝑐𝑎𝑝𝑒𝑖
 | ! 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑖)

(∑ 𝑓𝑖𝑟𝑒𝑒𝑠𝑐𝑎𝑝𝑒𝑖
 | 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑖)

⁄  (5.11) 

 

where 𝜌 is the global mean rate of escape for each fire type, 𝑓𝑖𝑟𝑒𝑒𝑠𝑐𝑎𝑝𝑒𝑖
 is the number of DAFI 

records for fire use 𝑖 which describe escaped fire, and 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑖 is a Bernoulli random variable 

representing the presence or absence of fire control measures. 



138 
 

Table 5.6: Impact of fire control behaviours on fire escape rate by two categories of fire use. 

Fire control is presented according to the ordinal scale adopted in DAFI: 0 represents no fire 

control, 1 indicates ‘limited or adhoc measures’, 2 represents ‘moderate or traditional (TEK)’, 

and 3 indicates industrialised or intensive fire control measures. The ordinal scale captures 

the difference between fire control (2-3) and no fire control (0-1), but further distinction is not 

justified quantitatively. Owing to limited data, the number of DAFI records is used to calculate 

rate of escape rather than numbers of fires.  

 

Fire use types 
Fire control  
(0-3) Escape rate Count 

Crop residue, Crop field 

preparation & vegetation 

clearance 

0 

1 

2 

3 

0.167 

0.197 

0.091 

ND 

32 

88 

79 

0 

Pasture management & 

Hunter gatherer 

0 

1 

2 

3 

0.088 

0.381 

0.026 

0 

57 

62 

38 

1 

Pyrome management 

0 

1 

2 

3 

ND 

0 

0.029 

0.004 

0 

17 

35 

513 

 

 

Having calculated rates of escaped fire for each fire use given an attempt to control, and with no 

control, the next step was to develop a distribution model of the ‘fire controlled?’ variable. Analysis 

of DAFI demonstrates how regimes of fire governance and associated degree of fire control measures 

emerge through complex patterns of socio-economic and ecological factors (Chapter 3; Section 

3.3.4). Therefore, rather than modelling the degree of fire control as a function of secondary 

variables such as HDI or ET, the modelled distribution of anthropogenic fire regimes (AFRs) in 

WHAM! were used as predictor variables. 
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As data were limited (e.g. n = 12 for hunter gatherer fire with control >=2), control measures for 

pasture fire and hunter gatherer fire were grouped together, as were crop residue, field preparation, 

and vegetation clearance. These two categories were identified through a simple (2-node) 

classification tree. Pyrome management was found to be controlled in almost all instances (548 of 

565) and no impact was found of control on escape rate. Therefore, as a simplifying assumption, 

pyrome management fires were assumed not to escape. Finally, it was originally intended to include 

vegetation flammability (an output of INFERNO) as a predictor of fire escape, however it was found 

not to be associated with the rate of escaped fire during analysis. However, INFERNO’s flammability 

calculations will still play a substantial role in the eventual coupled modelling of escaped fire by 

determining the size of wildfires started from escaped managed fire (Figure 5.1).  

 

5.2.4.2 Arson 

Arson was defined as fire used deliberately to harm persons or damage property. Fires caused 

through carelessness or callousness such as through untended campfires or cigarettes dropped from 

car windows were categorised as background or accidental ignitions (Chapter 3; section 3.3.4). As 

arson is intentional, the tendency of AFTs to use fire for arson was parameterised similarly to the 

managed fire types described in Section 5.2.2. However, as arson fires are lit to cause damage, they 

are not managed and cannot be considered to have an intended burned area in the same way as a 

pasture or crop residue fire. Therefore, rather than using burned fraction as the dependent variable 

in the burned area calculation, fires km2 year-1 was used.  

Furthermore, similar to escaped fire, arson is frequently associated with landscape-level effects, 

particularly conflict between land users over tenure (Chapter 3; Section 3.3.3.7). Therefore, the 

modelled distribution of AFRs was again used as predictor variables. The impact of very inaccessible 

terrain such as deserts, the arctic tundras and rainforests with associated very low populations was 

not fully accounted for in initial model outputs. Therefore, in addition to constraints described in 

Section 5.2.3, to capture this effect, arson fires were multiplied by one minus the modelled 

unoccupied fraction. 
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5.2.4.3 Background fires 

In addition to fire generated by humans for a specific purpose, WHAM! also models fires generated 

accidentally or incidentally by anthropogenic activities. These include sparks from cigarettes, 

forestry machinery, fire-arms during hunting, and from faulty powerlines and other anthropogenic 

infrastructure (Chapter 3; Section 3.3.4.1). It also includes fires used in urban areas for waste 

disposal that escape to become wildfires (e.g. Langer et al., 2017), as WHAM! does not explicitly 

parameterise the behaviour of urban residents who do not actively manage the land. Therefore, to 

capture this broad range of fire types, fire density data (fires km-2 yr-1) were selected from DAFI 

where the recorded fire purpose was accidental or unknown, or covered all fires in the study area. A 

simple regression tree was then developed to project these globally. As the burned area from 

accidental fires will ultimately be calculated by JULES-INFERNO, the top-down constraints described 

in Section 5.2.3 were not applied to the background rate calculations.  

 

5.2.5 Model sensitivity-exploration & evaluation 
 

5.2.5.1 Model sensitivity exploration 

Given the intention to couple WHAM! with the JULES-INFERNO, sensitivity analysis at this stage was 

conducted to explore and understand the model’s behaviour rather than assess overall model 

uncertainty. Therefore, a simple single parameter perturbation approach was undertaken to 

understand model sensitivity to its free parameters. As principally an empirical model, WHAM! has 

only 6 free parameters (Table 5.7). Two of these relate to the two top-down fire constraints 

described in section 2.3; three relate to the rate of vegetation clearance fire, and the final 

parameter, theta, is a land system distribution parameter described in Chapter 4.  

For Theta, the fuel fire threshold and AFR fire threshold, the range over which perturbations were 

conducted was the full range over which the parameter was likely to meaningfully alter model 

outputs. For example, as very few model cells had >0.8 fractional coverage of the industrial AFR once 

the AFR fire threshold reached this level it was likely to have no impact on model outputs. For the 

vegetation clearance fire parameters, the full range of values (0-1) was examined for the transitional 

and industrial AFR parameters, whilst ensuring that the transitional AFR parameter value was higher 

than the industrial AFR value. The range of free parameters used for sensitivity analysis is given in 

Table 5.7.  
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Table 5.7: WHAM! free parameters and ranges used during sensitivity analysis.  

Variable Model domain Section Parameter range Use 

Theta 

Land system 

distribution 

Chapter 4; 

Section 

4.2.3.4  0-0.2 

AFT competitiveness 

scores < Theta are set to 0. 

Vegetation clearance 

fractions (x3) AFT fire use 5.2.2.6 

Preindustrial: 1 

Transitional 0.5-1 

Industrial 0-0.5 

Fraction of vegetation 

clearance conducted using 

fire for each AFR 

Fuel fire threshold 

Top-down fire 

constraint 5.2.3 0-0.4 

Fraction of bare soil 

coverage in a cell at which 

the fuel constraint is applied 

AFR fire threshold 

Top-down fire 

constraint 5.2.3 0.4-0.8 

Fraction of cell coverage of 

industrial AFR at which it 

reduces overall fire use 

 

 

5.2.5.2 Model evaluation 

The land use engine of WHAM! was evaluated in Chapter 4 by comparison with a null (multinomial 

regression) model and with the Human Appropriation of Net Primary Production. Calculating burned 

area from unmanaged fires projected by WHAM! will require coupling with JULES-INFERNO. So, 

evaluation of model outputs in this Chapter focuses on managed fire only. Evaluation of unmanaged 

fire and fire suppression (extinguishing) outputs is conducted in Chapter 6 (Table 4A).  

Evaluation of model outputs for managed fire was conducted in four ways. The first three were 

purely empirical evaluations, whilst the third adopts a pattern-oriented approach, an approach 

which seeks to evaluate the realism of model structure (Grimm and Railsback, 2012). Firstly, within 

sample performance of individual fire use models against their respective training data was assessed 

with r2 (burned area) and AUC (tendency). These two metrics are standard measures of model 

predictive accuracy for regression (r2) and classification (AUC) respectively (Steyerberg et al., 2010). 

Within sample performance is presented alongside the sub-models in section 5.3.1, whilst results for 

the remaining model evaluation methods are reported in section 5.3.4. 
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Secondly, model outputs for crop residue burning were compared against the recently released crop 

fire outputs from the Global Fire Emissions Database version 5 (GFED5; Hall et al., 2023). Similar to 

the first FIREMIP, this was done using data for the overlapping period of WHAM! historical runs and 

the MODIS-era of GFED5 (2001-2014; Rabin et al., 2018). Pearson’s correlation coefficient between 

WHAM! outputs and GFED5 was calculated using a square-root transformation to account for the 

skewed distribution of burned area. To account for differences in underlying cropland distributions 

that are inputs to the GFED5 (the MODIS-derived MCD12Q1; Hall et al., 2023) and WHAM! (LUH2; 

Hurtt et al., 2020), correlations were also calculated for a rate of cropland burned per pixel.  

Thirdly, such that model outputs for all modes of managed fire use could be evaluated, managed fire 

outputs were compared against unseen DAFI data – i.e. those that were not used during AFT 

parameterisation. For example, if fire return period was used to parameterise a particular AFT fire 

use, then it could be evaluated against unseen burned area % data from other case studies. 

Pearson’s r (correlation coefficient) was used to assess performance. As noted in Chapter 3, small 

case studies in WHAM! tended to focus on niche areas of widespread anthropogenic fire use, so 

larger case studies may be more representative at landscape scale and above. Therefore, the 

correlation coefficient was calculated for WHAM! outputs against the raw unseen DAFI data, and for 

WHAM! outputs against DAFI case studies weighted by their geographic area. Weights were 

calculated as a fraction of the largest case study in the evaluation set; those without a reported area 

were assigned the median weight. 

Finally, a pattern-oriented assessment was conducted by comparing the temporal trend in WHAM! 

outputs against the qualitative evaluation of temporal trend in fire use in the LIFE database of Smith 

et al., (2022). This assessment of temporal trend was not present in the DAFI data, and was not used 

to develop the model. Assessment of the temporal trend in WHAM! managed fire outputs should 

test whether AFT parameterisations are capturing ‘structurally realistic’ system dynamics (Gallagher 

et al., 2021). Unlike DAFI (Chapter 3), the LIFE database contains qualitative assessments of whether 

‘subsistence’- and ‘market’- oriented fire uses were increasing or decreasing at a given location.  
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Comparison with the LIFE database was conducted at two scales. Firstly, it was assessed whether 

WHAM! reproduced the global finding of Smith et al., (2022), that subsistence-oriented fire had 

decreased whilst market-oriented fire had increased. Secondly, data were compared at a case-study 

level. Crop field preparation, pasture management and hunter gatherer fire uses were considered 

primarily subsistence-oriented; crop residue burning and vegetation clearance were considered 

primarily market-oriented; pyrome management was not classifiable as either. Given the LIFE 

database does not quantify the magnitude of change, the evaluation metric used was the proportion 

of WHAM! model runs that produced the same temporal trend as LIFE. 

 

5.2.6 Model experiments  
To assess and understand the model’s outputs and behaviour, WHAM! was run annually across a 

historical period from 1990-2014. The rationale of this timeframe was driven by data availability. 

DAFI focused on 1990-2020, whilst 2014 represented the end of the CMIP6 historical run period. The 

same 100 bootstrap parameter sets used for the tree models driving distribution of LFS presented in 

Chapter 4 were used.  

To explore the relationship between land cover, land use and fire management, two counterfactual 

experiments were run, and compared with a baseline historical run:  

• LC90 (land cover 90) - in which land cover was held constant at 1990 levels; and 

• LU90 (land use 90) – in which socio-economic forcing data (GDP, HDI, market access & 

population) were held constant at 1990 levels. 

 

  



144 
 

5.3 Results 
 

5.3.1 Sub-model parameterisation and performance 

5.3.1.1 AFT distribution 

The performance of the four AFT distribution models is broadly in line with the distribution models 

for the Land-fire systems themselves (Chapter 4). The mean AUC for the AFT models was 0.766, 

compared with 0.812 for the LFS models. Furthermore, the variables driving the distribution of AFTs 

within an LFS was again broadly similar to the LFS – with socio-economic factors such as HDI, GDP 

and market access playing the dominant role, with a secondary role for biophysical factors (Figure 

5.4). In the AFT distribution models, seven of nine nodes are occupied by economic variables, with 

two occupied by biophysical variables.  

 

Figure 5.4: Distribution of predictor variables for AFT distribution models (n = 4), AFT 

parameterisations for cropland fire (n = 6) & landscape fire (n = 14). AFT parameterisations 

for managed fire showed a clear distinction between cropland fires, which were primarily 

driven by socio-economic factors, and landscape fire parameterisations, which tended 

towards biophysical variables. 
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5.3.1.2 AFT managed fire parameterisations 

Sub-model performance is reasonably robust performance given prior knowledge gaps and areas of 

sparse data on anthropogenic fire use. The combined mean r2 for the managed fire sub-models was 

0.266, whilst the mean AUC for the tendency of an AFT to a given managed fire use was 0.772 (Table 

5.8). However, within this broad picture there were clear areas where model performance was more 

reliable, and these corresponded closely with areas where underlying data were most robust.  

Firstly, models performed better for sedentary forms of land use than for (semi-) nomadic systems 

such as shifting cultivation and pastoralists. The mean AUC and r2 were 0.761 and 0.321 respectively 

for fire use by sedentary types against 0.623 (AUC) and 0.069 (r2) for the nomadic types. This is 

largely a reflection of the underlying data used to build the models and is assessed further in the 

discussion. A possible outlier to this trend is hunting and gathering fire, for which a stronger model 

performance was observed (auc = 0.860, r2 = 0.547). However, only 7 data points were available for 

developing the burned area model.  

The variables used in the AFT fire use parameterisations show a distinct pattern between those for 

cropland fires (crop field preparation and crop residue burning) and landscape fires (pasture 

management, pyrome management and hunting and gathering; Figure 5.4). Cropland fire models are 

primarily parameterised with economic variables (8 of 12 cases), whilst landscape fires are 

parameterised chiefly with biophysical variables (17 of 26 cases). This pattern is in line with 

literature understanding of such processes. For example, crop residue burning is known to be driven 

by agricultural intensification (Kumar et al., 2015), whilst use of fire for hunting and gathering 

amongst indigenous communities is known to closely follow global biophysical gradients (Coughlan 

et al., 2018).  
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Table 5.8: Summary of performance of parameterisation of managed fire by mode of fire use 

and AFT. The performance of sub-models is stronger for AFTs associated with sedentary 

agricultural systems than for nomadic and semi-nomadic systems such as shifting 

cultivation, pastoralism. 

 

Fire use AFT AUC R2 

Crop field preparation Shifting cultivation 0.602 0.064 

Crop residue burning 

SOSH  
 
MOSH 
 
Intensive arable farmer 

N/A 
 
N/A 
 
0.723 

0.237 
 
0.326 
 
N/A 

Hunter gatherer Hunter gatherer 0.860 0.547 

Pasture management 

Pastoralist 
 
Extensive livestock farmer 
 
Intensive livestock farmer 

0.644 
 
0.828 
 
0.731 

0.073 
 
0.400 
 
N/A 

Pyrome management 

Conservationist 
 
Hunter gatherer 
 
Managed forester 
 
State land manager 

0.736 
 
0.788 
 
0.860 
 
0.952 

0.400 
 
0.304 
 
N/A 
 
0.178 

Overall All 0.772 0.266 
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5.3.1.3 Unmanaged fire parameterisations 
Performance of models of unmanaged fires from arson and accidental (background) sources follow a 

similar pattern to those of managed fire (Table 5.9). Namely, those practices that are legal (or not 

explicitly clandestine) perform well reasonably well (r2 = 0.286), whilst arson (an illicit practice) is 

more challenging to model (r2 = 0.042). The difference can be attributed to the challenge in 

gathering data on violent and clandestine fire use, whereas the background rate of accidental or 

unattributed fires is readily documented in government and fire service statistics. However, the 

presence of a strong theoretical framework for why fire is used as a weapon – namely as a form of 

resistance for those without access to other forms of redress (Scott, 1985) – enables a robust 

performance in predicting its presence (AUC = 0.800), but not the number of associated fires.  

Finally, model performance for the distribution of fire control practices, which in turn inform the 

rate of escaped fire by mode of fire use, is strong, with mean AUC of 0.856. This can be considered 

good evidence that the AFRs are a useful means of describing anthropogenic fire regime 

management on a landscape.  

 

Table 5.9: Summary of performance of parameterisation of un-managed fire by fire type 

(where relevant). Similarly, to managed fire, the performance of sub-models is stronger for 

unattributed or accidental background fires - than for the inherently illicit practice of arson. 

The strong performance of modelled AFR distribution in predicting the degree of fire control 

behaviour highlights their strength in capturing anthropogenic fire regime management.  

Fire type Escaped fire type(s) AUC R2 

Background fires - NA 0.286 

Arson - 0.800 0.042 

Escaped fire (degree 
of fire control) 

Hunter gatherer & pasture fire; 
 
Crop residue & Crop field 
preparation & vegetation 
clearance 
 
Pyrome management, arson 

0.854 
 
 
0.858 
 
 
NA 

NA 
 
 
NA 
 
 
NA 
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5.3.2 Overall model outputs  
 

5.3.2.1 Managed fire 

Over the study period of 1990-2014, the mean burned area from managed fire across the 100 

bootstrapped model runs decreases from 431.9 to 419.1 Mega hectares (Mha; Figure 5.5). In 

percentage terms, this equates to a 3% decline. However, the size of the modelled decline is only 

7.5% of the mean difference between the 5th and 95th percentiles of the 100 runs: the 5th percentile 

of model runs in 1990 was 358.8 Mha, whilst the 95th percentile in 2014 was 517.0 Mha. 

Contrastingly, treating each model run individually, managed burned area declined in 97 of 100 

model runs. This indicates that whilst the overall extent of burned area is substantially impacted by 

data uncertainty, the trend of a slight temporal decline is not. Together these results indicate 

moderate confidence in a modelled decline in burned area from managed fire over the study period.  

There is substantial heterogeneity in the trend amongst fire use types. The overall modelled decline 

in burned area is primarily due to a decrease in fire for pasture management, which declines 20.1% 

from 192.04 Mha to 153.7 Mha over 1990-2014 (Figure 5.6). This is complemented by declines in 

shifting cultivation (crop field preparation) fire (31.5 Mha to 26.9 Mha) and hunter gatherer fire 

(23.2 Mha to 19.4 Mha). By contrast, crop residue burning increases by 17.0% from 112.0 Mha to 

131.1 Mha and pyrome management fire use increases by 15.7% from 69.5 Mha to 80.4 Mha. In 

absolute terms, vegetation clearance fires burn the smallest area (3.4-9.1 Mha), but in relative 

terms, their increase is much the largest (217%), highlighting this growing environmental challenge.  
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Figure 5.5: Global model outputs for managed fire in 1990 & 2014 grouped by land cover. 

Forestry and non-extractive fire use types are grouped together as this will be how they are 

interpreted by JULES-INFERNO (Section 5.1.2). Maps highlight the decline in pasture fires 

in South America. Conversely, pasture fire increases in Sub-Saharan Africa. Crop fires 

increase in Northern India, South Asia and modestly in South America, but decline 

elsewhere. 
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Figure 5.6: Trends in managed fire use grouped by land system. A) burned area, and B) 

relative change in burned area against a 1990 baseline. Shading shows the 5th and 95th 

percentiles of the distribution across model runs. Overall, pasture fire accounts for both the 

largest amount of fire and the largest absolute decline. In cropland systems, shifting 

cultivation fire and residue burning exhibit opposite trends. Whilst vegetation clearance fire is 

small in absolute terms, it shows the largest relative increase over the model period. Narrow 

uncertainty ranges around pasture fire and residue burning in B) are indicative of consistent 

proportional change in burned area, even with substantial uncertainty in absolute terms (A). 

Key: CFP = Crop field preparation, CRB = Crop residue burning, HG = Hunter gatherer, 

Pasture = Pasture management, Pyrome = Pyrome management, VC = Vegetation 

clearance.
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Uncertainties in managed fire across the 100 model runs are greatest in absolute terms for fire types 

producing the largest amount of burned area (1σ, crop residue burning: 74.9 Mha, pasture 

management 78.2 Mha). The proportional change in burned area from these two fire use types is 

essentially unchanged across runs (Figure 5.6b), in spite of their variance in absolute burned area. 

Furthermore, in all 100 runs, pasture management and crop residue burning were found to decrease 

and increase respectively. As a proportion of their total burned area, uncertainty is greatest for 

nomadic land systems, shifting cultivation and hunter gatherer fire, reflecting the uncertainty in the 

underlying parametrisations (Figure 5.6b).  

Beneath the global trends in managed fire, there is substantial spatial heterogeneity. At the 

continental scale, the decline in pasture management fire dominates in South America, declining 

from 55.31 Mha in 1990 to 25.15 Mha in 2014, leading to a decline in overall managed fire from 

102.14 Mha to 71.12 Mha (Figure 5.7). By contrast, in Africa pasture fire increases by 6.51 Mha, 

whilst in Asia a decrease in pasture fire of 9.83 Mha is more than offset by a steep increase in crop 

residue burning of 18.17 Mha.  

 
Figure 5.7: Managed fire burned area for the two dominant modes of managed fire & total 

managed fire for the three continents with largest burned area from managed fire. Whilst the 

global declining trend in pasture management fire is dominant in South America, in Africa, 

pasture and crop residue fires contribute to an overall slight increase. Similarly, in Asia, a 

decline in pasture fire is offset by a marked increase in crop residue fires. 
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5.3.2.2 Unmanaged fire 

Whilst burned area from managed fire modestly decreases globally, the picture from unmanaged fire 

is mixed. Arson and accidental anthropogenic fires both increase (Figure 5.8), whilst the number of 

escaped fires is broadly static, even as burned area from managed fire decreases. The background 

rate of accidental fires increases 24.9% whilst the rate of arson increases 17.3%. However, until 

WHAM! is coupled with JULES-INFERNO, it will not be possible to deduce if this has led to increase in 

burned area from unmanaged anthropogenic fire. This consideration is particularly important given 

the distribution of unmanaged fires is seemingly clustered around wildland urban interface areas 

(Figure 5.8b), meaning that many of these ignitions will likely be extinguished through industrialised 

fire fighting (Chapter 3). 

 
Figure 5.8: Unmanaged fire outputs as fires km-2: A) temporal change and B) spatial 

distribution in 2014. The rate of unmanaged fires increases over the modelled period. 

However, this increase is clustered towards Wildland Urban Interface areas (visible as spatial 

anomalies in B), and the impact of this on burned area can only be assessed through 

coupling with JULES-INFERNO (Chapter 6). 
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5.3.3 Model experiments: drivers of anthropogenic fire use 
Counterfactual experiments reveal divergent impacts between land cover change and changes in 

land use intensity. In the LC90 experiment, where land cover was held constant at 1990 levels, 

managed fire declines more starkly than in the baseline model run (431.94 to 388.74 Mha; Figure 

5.9). By contrast, LU90 (land use intensity - and therefore AFR - constant at 1990 levels) leads to an 

increase in overall managed fire from 431.94 to 472.10 Mha.  

The effects of land cover and land use intensity on human fire use have clear spatial patterns (Figure 

5.9b). In LU90, the increase in fire over the baseline scenario is most evident in South America, 

further highlighting the importance of land use intensification in this continent as a driver for change 

in global fire regimes. Similar increases over the baseline are present in North-eastern China and 

Mexico. By contrast, in Northern India, the LU90 counterfactual leads to decreased fire against the 

baseline, indicating land use intensification has led to increased fire use. This finding fits previous 

analyses of crop residue burning in the Indo-Gangetic Plain (Kumar et al., 2015). The LC90 (constant 

land cover) counterfactual has more consistent global effects, with decreases in fire over the 

baseline observed in regions with large amounts of extensive livestock farming, Madagascar, the 

Guinean Savanah, and Southern Brazil. 

Divergent trends between land use and land cover change on human fire use point to similarly 

divergent socio-economic drivers across differing modes of fire use (Figure 5.10). For example, at 

global scale, population density seems to be associated with increased crop residue burning (r = 

0.31). By contrast, population density has a more ambiguous effect on pasture management fires (r 

= -0.05), the distribution of which is negatively correlated with socio-economic development (as 

measured by the HDI; r = -0.47).  

Similarly, across the three continents with the highest rates of agricultural fire – Africa, Asia, and 

South America – increased HDI consistently leads to decreased fire use for pasture management 

(Figure 5.10b). However, in these three continents, increased HDI can lead to either increased or 

decreased fire use for crop residue burning: at a mean HDI of ~0.6 such fire use increases 

substantially in Asia, but decreases in South America. Possible process-based explanations of this 

trend are offered in the discussion (Section 5.4.1). 
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Figure 5.9: Global burned area from managed fire under counterfactual scenarios. A) global 

trends 1990-2014; B) change in burned area between counterfactual and baseline scenario 

in 2014. Key: LC90 – land cover held constant at 1990 levels; LU90 – land use intensity held 

constant at 1990 levels. 
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Figure 5.10: Drivers of managed burned area for the two modes of anthropogenic fire use 

with largest global burned area: A) by pixel, and B) by continental mean. Population density 

seemingly increases the rate of crop residue burning but has an unclear impact on pasture 

management. The human development index (HDI) has a similarly complex relationship with 

fire use: increased HDI consistently leads to decreased pasture fire but can lead to divergent 

outcomes for residue burning. Data are from baseline model runs in a) 2014 & b) 1990-2014.
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5.3.3 Model sensitivity and evaluation 
 

5.3.3.1 Model sensitivity 

Parameter perturbation reveals a maximum sensitivity of global managed burned area outputs to a 

single parameter of ± 17.9 Mha - for the ‘theta’ threshold (Figure 5.11). This equates to a variation of 

± 4.4% averaged over 1990-2014. Mean sensitivity across the three parameters that impact all 

managed fire types (the vegetation threshold, the dominant AFR threshold and the theta threshold) 

is ± 13.9 Mha (± 3.2%). The total range of global burned area outputs in the model sensitivity 

exploration is 42.9 Mha, which is just 19.5% of the data uncertainty defined by bootstrap resampling 

of DAFI (219.8 Mha; Section 5.3.2). Although full parameter uncertainty cannot be assessed before 

model coupling, it is likely that WHAM! is substantially more sensitive to uncertainties in its 

underlying data than to uncertainty in model free parameters.  

A partial exception is found in the case of the vegetation clearance fire parameters. As a proportion 

of burned area from vegetation clearance alone, parameter perturbation leads to a total sensitivity 

of 41.7% (± 1.7 Mha). This occurs as the relationship between vegetation clearance and fire could 

not be defined empirically from DAFI data, and so is captured by free parameters.     

 
Figure 5.11: Sensitivity of model mean burned area from managed fire (1990-2014) from 

one parameter perturbations. The model is most sensitive overall to the Theta fire constraint, 

but the overall range of sensitivity is just +-4.4%. Key: AFR = Anthropogenic fire regime, 

Vegetation = Vegetation constraint, VC = Vegetation Clearance   
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5.3.3.2 Evaluation with GFED5 crop data 

WHAM! outputs for crop residue burning are in broad agreement with GFED5 crop fires. Correlation 

(Pearson’s r) is 0.673 for burned area per pixel, and 0.665 for rate of cropland burned per pixel. 

WHAM! crop residue outputs project more burning than GFED5, with a mean of 129.2Mha over the 

overlapping period (2001-2014) compared to 87.6Mha for GFED5. The main continent driving this 

disagreement is Asia: 67.8Mha in WHAM! compared to 31.2Mha in GFED5 (Figure 5.12; Figure 5.13).  

Furthermore, WHAM! and GFED5 disagree on the trend of global crop fires, with WHAM! projecting 

a global increase and GFED5 suggesting a decrease (Figure 5.13). At the continental-scale, WHAM! 

and GFED5 agree on the trends in Europe and North America (decreasing). However, WHAM! 

projects gains in Asia (GFED decreasing), as well as increases in Africa (GFED decreasing). It should be 

noted that the trend in the GFED data shows close alignment with the trend in the overall fire 

regime (Figure 5.14), suggesting the crop fire signal may not be fully isolated. By contrast WHAM! 

exhibits contrasting trends between crop residue fires and other managed fires. For example, in 

South America and Asia, WHAM! residue fires and other managed fires are negatively correlated (r = 

-0.91, -0.74 respectively), whilst GFED5 outputs for crop fires and the overall regime are positively 

correlated in all cases. 

Analysis of the difference between WHAM! and GFED rate of cropland burning demonstrates 

disagreement is most correlated to the transitional cropland anthropogenic fire regime (r = 0.342; 

Table 5.10). This mirrors the findings in Chapter 4, where the transitional anthropogenic fire regime 

was the greatest source of disagreement between WHAM! AFR outputs and HANPP efficiency 

(Chapter 4, Figure 4.10). Furthermore, the disagreement between temporal trend in HANPP 

efficiency and AFR outputs was greatest in Nothern India, South and Eastern China – which aligns 

with disagreements between WHAM! and GFED5 crop fires. The distribution of rice also plays a role 

– with errors weakly correlated to its distribution (r = 0.087). 
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Figure 5.12: Comparison of WHAM! crop residue burning outputs and GFED5 crop fire 

outputs. Disagreements are evident in Northern India, mirroring the intercomparison of 

HANPP efficiency and WHAM! AFRs (Chapter 4, Figure 4.10). 

 

Table 5.10: Correlation (r) of  differences between WHAM! crop residue fires and GFED5 

crop fires to crop types & WHAM! Anthropogenic fire regimes (pre-industrial, transition and 

industrial). ‘Rate’ gives the proportion of cropland burned per pixel, and ‘Total’ gives the 

fraction of the pixel burned from cropland fires. Only pixels with cropland present in the 

underlying distributions for WHAM! and MODIS were included; a square root transformation 

was applied. 

 Cropland Maize Rice Soybean Wheat 
Pre-
industrial  Transition Industrial 

Rate -0.069 -0.103 0.087 -0.096 -0.116 0.237 0.342 -0.237 

Total 0.703 0.310 0.447 0.212 0.393 0.041 0.389 -0.269 
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Figure 5.13: Continent-scale trends in burned area for WHAM! crop residue fires and GFED5 crop fires. As with the intercomparison 

with HANPP efficiency and WHAM! AFRs (Chapter 4), the biggest area of disagreement is in Asia.  
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Figure 5.14:  Comparison of WHAM! and GFED5 crop fires compared with the wider regime (other managed fires / all other GFED5 fires 

respectively). WHAM! is able to detect contrasting trends in fire uses, whilst in GFED5 the crop fire signal appears incompletely 

separated from the wider fire regime. Conversely, GFED5 is better able, in principle, to detect inter-annual variability.
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5.3.3.3 Evaluation with unseen DAFI data 

WHAM! reproduces the broad patterns of burned area in unseen DAFI data (Table 5.11). The ability 

of WHAM! to reproduce these data increases when they are weighted by case study area . WHAM! 

achieves a mean Pearson’s r of 0.35 against unseen DAFI case study data. However, when case 

studies were weighted by their spatial extent, this rises to 0.71. Performance is best for those fire 

types which occupy most of the land surface: crop residue burning (r = 0.93) and pasture 

management fire (r = 0.81).  

Further, WHAM! consistently produces lower burned area for a given case study location than is 

recorded in DAFI (Figure 5.15). DAFI by design comprises case studies from locations with active 

anthropogenic fire use, so it may well be a positive indicator that WHAM! reverts towards a lower 

overall mean across larger areas. This underestimation of fire by WHAM! is most acute in areas of 

crop residue burning, which can be very tightly packed in areas such as river deltas (e.g. Hong van 

2014), in ways that cannot be captured at a coarse spatial resolution.  

 

5.3.3.4 Evaluation with LIFE database 

At global-scale, WHAM! and the LIFE database are in strong agreement (Table 5.12). All model runs 

for crop residue burning, pasture management and vegetation clearance agree with the global trend 

presented in LIFE. Agreement for crop field preparation is more modest (77/100 model runs in 

agreement). There is no agreement in global trends for hunting and gathering fire (11/100 model 

runs), this may be as data were limited for this parameterisation (Section 5.2.2.5). 

By contrast, case-study level comparison yields a no-result. The mean number of model runs in 

agreement with the trend assessment in LIFE for individual fire types is 53 – essentially no better 

than a coin flip. Therefore, WHAM! and LIFE project the same trends at macro-scale, but at finer 

spatial resolution there is little agreement. This reiterates the finding of the comparison with unseen 

WHAM! data: that it is challenging to compare small-scale case studies and a coarse-scale model 

such as WHAM! This tension is unpacked further in the discussion.  
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Table 5.11: Correlation coefficient (r) of WHAM! outputs against unseen data in the DAFI 

database. WHAM! performance is greatly enhanced once the size of the case study was 

accounted for (size weighted). 

 

Fire type Equal weights Size weighted 

Crop field preparation 0.45 0.52 

Crop residue burning 0.12 0.93 

Pasture management 0.39 0.81 

Vegetation clearance 0.43 0.56 

Overall 0.35 0.71 

 

 

 

Figure 5.15: Violin plot comparing distributions of outputs from WHAM! and unseen data 

from the Database of Anthropogenic Fire Impacts (DAFI); WHAM! consistently projects lower 

burned area than DAFI, indicative of their greatly differing spatial resolution. Key: CFP = 

Crop field preparation, CRB = Crop residue burning, Pasture = Pasture management, VC = 

Vegetation clearance
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Table 5.12: Change in WHAM! model runs compared to the assessment in the LIFE 

database of Smith et al., (2022): A) at global scale, and B) at case-study level. Numbers 

reflect the proportion of the 100 WHAM! runs which agree with the Smith et al., assessment. 

At global scale, there is robust agreement; however, at case study level less agreement is 

observed. Results are shown for fire types individually and for market / subsistence (Sub’ce) 

oriented types grouped together. 

Key: CFP = Crop field preparation, CRB = Crop residue burning, HG = Hunter gatherer, 

Pasture = Pasture management, Pyrome = Pyrome management, VC = Vegetation 

clearance; (s) = primarily subsistence oriented, (m) = primarily market oriented. 

 

LIFE Database WHAM! outputs (proportion of model runs) 

Orientation Status 
CFP  
(s) 

CRB 
(m) 

HG 
(s) 

Pasture 
(s) 

VC 
(m) 

Market 
(m) 

Sub’ce 
(s) 

Market Increasing N/A 1 N/A N/A 1 1 
 
N/A 

Subsistence Decreasing 0.77 N/A 0.11 1 N/A 
 
N/A 

 
0.98 

 

 

LIFE Database WHAM! outputs (proportion of model runs) 

Orientation Status 
CFP  
(s) 

CRB 
(m) 

HG 
(s) 

Pasture 
(s) 

VC 
(m) 

Market 
(m) 

Sub’ce 
(s) 

Market Decreasing N/A 0.90 N/A N/A 0.47 0.64 N/A 

Market Increasing N/A 0.66 N/A N/A 0.53 0.59 N/A 

Subsistence Decreasing 0.41 N/A 0.30 0.47 N/A N/A 0.44 

Subsistence Increasing 0.61 N/A 0.41 0.48 N/A N/A 0.43 
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5.4 Discussion 
 

This chapter has presented WHAM!, the first global behavioural land system model of human-fire 

interactions. The ultimate intention is to couple WHAM! with the JULES-INFERNO DGVM. Here, 

WHAM! has been presented in standalone form. Therefore, discussion focuses on managed fire, 

which can be independently evaluated without input from JULES-INFERNO. 

 

5.4.1 WHAM! outputs 
WHAM! outputs suggest burned area from managed anthropogenic fire declined over the period 

1990-2014, driven by a decline in fire use for pasture management, particularly in South America 

(Figure 5.7). By contrast, fires for crop residue disposal increase by 19.1 Mha. It is notable that 

cropland fires are typically the smallest anthropogenic fires (median = 0.5 ha; Chapter 3), which is far 

below the threshold at which MODIS can detect fires (21ha). With cropland fires excluded, WHAM! 

managed burned area declines by 24 Mha over the overlapping period with MODIS observations 

(2000-2014). The global projection of cropland fires in GFED5 is a novel Earth observation product - 

and is itself a model relying on empirical scaling factors to infer burned area per active fire detection 

in cropland areas (Hall et al., 2023). These scaling factors for rice burning were developed from 

fieldwork in Ukraine (Hall et al., 2021), in study locations where the mean field size of 40ha is much 

larger than the smallholder fields in Northern India (~1ha). Together, the modelled decrease in 

pasture fire alongside the ongoing challenge of detecting small cropland fires, supports the finding of 

Smith et al., (2022) that changing patterns of anthropogenic fire use may in part explain the 

observed decline in global burned area (Andela et al, 2017).  

Counterfactual experiments and analysis of the drivers of pasture management fire in WHAM! 

demonstrate that the modelled decline in pasture fire is primarily due to land use intensification (as 

represented by HDI in Figure 5.10). This finding matches real-world observations. The rapid pace of 

land use intensification in South America was documented by (Silva et al., 2017), who attribute 

changes to the ‘telecoupled’ system of soybean production in response to increased Chinese 

demand for meat. Furthermore, this process of declining fire under increased land use intensity was 

explored in the field experiments of Cammelli et al., (2020), who find that increased capital 

investment discourages fire use as a management strategy: fire increasingly becomes a risk to 

machinery, irrigation, and other capital investments.  
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By contrast, the relationship between increasing societal development (represented by the Human 

Development Index) and cropland residue burning is more ambiguous (Figure 5.10). In Africa (HDI: 

0.3-0.5), increased HDI seems to increase crop residue burning, consistent with land use 

intensification driving this practice. However, at intermediate (0.6-0.85) levels of HDI, increased 

development can have divergent impacts on residue burning. In Asia, increased HDI was associated 

with increased cropland burning, whereas the opposite was true in South America.  

It is possible that farm size, and therefore the production system plays a role here: large soybean 

farmers in South America engaged in formal, legalised supply chains are somewhat likely to comply 

with fire use policies and wider environmental legislation (Soares-Filho et al., 2014; Villoria et al., 

2022). By contrast, in Asia, and the Indo-Gangetic Plain in particular, high rural population and small 

average farm size entails that production is dominated by small-holder farms who frequently 

participate in ad-hoc or informal supply chains (Birthal et al., 2017), making environmental 

enforcement more challenging (Bhuvaneshwari et al., 2019; Liverpool-Tasie et al., 2020). In WHAM!, 

this difference is seemingly captured through the impact of population density, which features in the 

classification tree for the small-holder land fire system (Chapter 4). 

Finally, WHAM! suggests that human fire use can either increase or decrease with increasing 

population, in ways that are highly specific to the rationale of the underlying land system and 

associated modes of fire use. At global scale, crop residue burning increases with population density, 

but there a weak negative relationship with pasture fire. Taken together, these complexities 

illustrate the shortcomings of relying on a single function of population density to capture the full 

spectrum of human-fire interactions globally (eq. 5.1). 

 

5.4.2 WHAM! performance 
WHAM! was developed from a meta-analysis of literature case studies and is driven by simple 

statistical tools (generalised linear models, classification and regression trees). Yet, WHAM! outputs, 

particularly for managed fire, are surprisingly complex (Figure 5.10). Relationships between 

predictor variables and burned area are not consistent across fire types, nor are they consistent 

across space. WHAM!’s capacity for capturing these complex dynamics stems from the use of AFRs: 

categorical variables that describe patterns of anthropogenic response to contrasting socio-

ecological environments across different land use systems. 
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For example, the AFRs prove valuable in modelling emergent phenomena on the landscape. Both 

arson and fire control behaviours emerge from complex interactions between socio-ecological 

factors (Chapter 3). For example, in the case of fire control behaviours, these include the impact of 

market forces on, and the degree of capital investment in an agricultural system (Cammelli et al., 

2020), cultural traditions of fire use and associated ecological knowledge (Seijo et al., 2015), political 

attitudes towards agricultural fire use – particularly the presence of bans (Bilbao et al., 2019), the 

degree of flammable vegetation surrounding agricultural regions (Cano-Crespo et al., 2015), and the 

value land users place on vegetation outside of the immediate parcel of land intended to be burned 

(Chokkalingam et al., 2005; Tacconi et al., 2006). Using the AFRs directly in models of arson and fire 

control behaviours results in high predictive accuracy (AUC >= 0.8) for the degree of control applied 

to managed fire use and for the presence of arson due to land tenure conflict (Table 5.9). This direct 

use of AFRs allows differing trends in escaped fire (due to a lack of control) and arson (due to land 

tenure conflict) to be modelled (Figure 5.8).  

The effectiveness of the AFRs at capturing complex emergent processes highlights the value of 

working within a strong conceptual framework for empirically-based land system modelling, as it 

allows AFT-level and landscape-level effects to be modelled coherently. Similarly, the utility of the 

AFRs as a modelling tool in WHAM! highlights the limitation of modelling approaches that attempt 

to link socio-economic indicators directly to human fire use and management. The AFRs enable 

WHAM! to represent how categorical differences in land management practices can cause divergent 

outcomes for fire use and management given similar socio-economic forcing (Figure 5.10). 

However, as with any categorisation or ontology of land system processes, the AFRs are imperfect. 

In particular, tying crop residue burning directly to the transitional fire regime seems to lead to 

overestimations in burning in comparison with the GFED5 crop fires product, particularly in Northern 

India. The rationale for this relationship is that fire use with limited community management and 

with damaging secondary consequences (in the case of residue burning primarily air quality; Lan et 

al., 2022) is an inherent part of the transition between community fire management (pre-industrial) 

and state-driven suppression (industrial). However, as indicated by the relationship of the AFR 

distribution and HANPP efficiency in Chapter 4, comparison of WHAM! and GFED5 indicates 

widespread residue burning need not be a necessary consequence of cropland intensification. 

Therefore, further understanding is needed to define the relationship between agricultural 

intensification - including double cropping, artificial fertiliser use, mechanisation - and crop residue 

burning. This issue is explored further in the overall thesis Discussion (Chapter 7, Section 7.3.2).
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As with any empirical model, WHAM! is inherently limited by the strengths and weaknesses of its 

underlying data. There were three ways in which uncertainties in the underlying data came through 

in model outputs, which are discussed in turn below. The first of these was in the parameterisation 

of fire use in nomadic land use systems – particularly shifting cultivation and pastoralism. The low 

AUC and r2 values for the underlying models is indicative of the difficulty of quantifying fire regimes 

produced by such land use systems. Shifting cultivation is challenging to study with remote sensing, 

not only as it is semi-nomadic, but also to the spectral signals produced (Jiang et al., 2022). This 

makes differentiating between fields and early-successional regrowth a substantial challenge 

(Heinimann et al., 2017). As a result, the fallow period was typically used from field studies as a 

proxy for fire return period. Yet this involved assumptions about the duration of cultivation after 

fallow; here assumed to be two years – yet this can vary from 1-5 years (e.g. Maharani et al., 2019).  

Pastoralism is also challenging to study with remote sensing, due to the difficulty of tracking 

pastoralists location across the large areas over which they may migrate seasonally (Nelson et al., 

2020). However, it should be noted that these fire uses represent a small amount of global burned 

area: burned area from shifting cultivation was just 26.9Mha, whilst migratory pastoralist fire 

accounted for just 18.4Mha of burned area in 2014. In the case of shifting cultivation, the use of fire 

is inherently limited by the need to fallow land to allow biomass to regrow sufficiently (Chapter 3, 

Section 3.3.3.1). Similarly, pastoralists often occupy arid, marginal environments, and fire use is 

limited by the availability of biomass to sustain fire (Chapter 3, Section 3.3.3.3). A further limitation 

to the representation of pastoralism is the use of LUH2 data for landcover, which has known issues 

with capturing the distribution of livestock systems in general and of rangelands in particular (Chini 

et al., 2021; Qiu et al., 2023). This is addressed further in Chapter 7, Section 7.3.2. 

Secondly, the more structural sampling biases within DAFI (as noted in Chapter 4) led to the need for 

top-down constraints being applied to the bottom-up parameterisation of fire uses. These arose 

firstly as DAFI did not sample very arid environments (the vegetation constraint in WHAM!); and 

secondly, because DAFI under-sampled more developed contexts (the industrial AFR constraint in 

WHAM!). However, sensitivity analysis demonstrated that WHAM! is not overly sensitive to the 

resulting free parameters – with burned area outputs varying by a maximum of ±4.4%.  

Furthermore, the most sensitive parameter was not for a top-down constraint, but the ‘theta’ 

parameter, which sets threshold at which a given AFR’s competitiveness score was set to 0. This is 

somewhat analogous to the ‘giving-up’ parameter in the CRAFTY land system model, which 

determines when land becomes abandoned in that model (Murray-Rust et al., 2014). CRAFTY is 

highly sensitive to this parameter (Seo et al., 2018), which is an uncertain function of agent 

behaviour. This seems a strength of the empirical approach taken here, as it appears less reliant on 

uncertain abstraction.  
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A third fundamental issue arises from the coarse spatial resolution of WHAM! Specifically, the spatial 

resolution of WHAM! and DAFI case study data are substantially different: the median WHAM! cell is 

seven times larger than the median DAFI case study (24684 vs 3508 km2). However, this is likely a 

large underestimate of the true discrepancy. Only 30% of case studies reporting pre-industrial AFRs 

quantified their study area, compared with 82% of industrial AFR case studies. The median reported 

study area is 36.5 times larger for industrial AFR case studies than for the pre-industrial AFR. This 

trend is likely even more acute for LIFE, as it focuses on ‘livelihood fire’ – which broadly corresponds 

to the pre-industrial and early transitional AFRs in WHAM! However, case study area is not recorded 

in LIFE. The consequence of this contrast in spatial resolution is seen in the evaluation of model 

outputs against unseen case study data.  

In comparisons against both DAFI and LIFE, WHAM! outputs capture macro-scale trends, but struggle 

to capture trends at the case-study level (Table 5.12). In the case of the comparison against unseen 

DAFI data, this lack of case-study level agreement was partly deliberate. As a part of the managed 

burned area parameterisation, WHAM! multiplies together a probability of fire use (0-1), which was 

calculated with up-sampled absence cases, and a burned area fraction map (0-1), which was 

calculated against case study data (Figure 5.3). This directly leads to burned area predictions that are 

lower than the raw DAFI data. Justification for this decision is further seen in the comparison of crop 

fire outputs with GFED5 – as with additional DAFI case studies in transitioning agricultural systems 

without widespread residue burning WHAM! may have better constrained this relationship. 

WHAM! therefore explicitly assumes that DAFI may bias locations with very active, or perhaps 

problematic fire use, as these may be most pertinent for study of human-fire interactions. This 

assumption can be justified as fire is often studied where it poses a risk to humans, whether from 

direct damage (e.g. Radeloff et al., 2018); air quality (e.g. Abdurrahman et al., 2020); or biodiversity 

loss through deforestation (e.g. Cardil et al., 2020). The extent to which this parameterisation holds 

true will only be fully clear after evaluation of the coupled WHAM!-INFERNO ensemble. Therefore, 

the very different spatial resolution of WHAM! and available evaluation data makes assessment of 

how far WHAM! captures the robust real-world drivers of changes in anthropogenic fire use 

challenging.     
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5.5 Conclusion 
 

This chapter has presented WHAM!, the first global behavioural land system model of human-fire 

interactions. WHAM! is able to reproduce a decline in burned area from managed anthropogenic 

fire, driven by land use intensification and declining fire use for extensive livestock farming 

particularly in South America. By contrast, WHAM! projects an increase in fires for crop residue 

burning. Drivers of human fire use in WHAM! are divergent across differing fire use types and 

spatially heterogenous.  

Evaluation of WHAM! is necessarily only partially possible without coupling to the JULES-INFERNO 

DGVM. However, WHAM! is able to reproduce broad patterns in unseen data, particularly for 

anthropogenic fire use within sedentary land use systems, which are easier to quantify using fine-

scale remote sensing than nomadic practices. As such, WHAM! crop residue burning outputs show 

good coherence with the GFED5 crop fires product. Overall, the diversity of anthropogenic fire 

practices and their divergent spatiotemporal trends and drivers highlight a fundamental need for 

consideration of categorical differences in land use systems in studies and models of anthropogenic 

fire use and management.
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Applications of WHAM!: the socio-ecological dynamics of 
global fire regimes in the recent past and future scenarios 

 

6.1 Introduction 
 

The previous Chapter set out how WHAM! was parameterised to represent managed anthropogenic 

fires, unmanaged anthropogenic fires and fire control measures. This chapter now describes how 

this new model was applied to explore two aspects of global fire regimes. The first area of model 

application is the socio-ecological dynamics of fire regimes of the recent past, and the second is how 

anthropogenic fire use and management may evolve under different future scenarios of 

environmental and socioeconomic change.  

To explore the first question, outputs from WHAM! were combined with those from the JULES-

INFERNO DGVM in an offline model ensemble. Specifically, using the definitions of Robinson et al., 

(2018; Chapter 2, Section 2.3.4), the WHAM!-INFERNO ensemble is a ‘periodic-prescribed’ model 

coupling. This means that whilst outputs of the ensemble are dependent on interactions between 

models, information is transferred one-way between models (from WHAM! to INFERNO), and this 

does not occur at every model timestep.  

This novel model combination enables several innovations in modelling of global fire regimes. For 

example, it allows the role of landscape fire – productive and managed vegetation fires (UNEP, 2022) 

– to be explored in a global and process-based simulation. Similarly, by representing the socio-

economic processes that drive the starting of unmanaged anthropogenic fires, the WHAM!-INFERNO 

ensemble removes the need for a globally-uniform representation of human ‘ignitions’ (Chapter 2, 

Section 2.2.1). The combined WHAM!-INFERNO ensemble also allows the role of human fire 

management, in the form of the degree of control applied to managed fire and fire extinguishing, to 

be analysed alongside the biophysical drivers of uncontrolled fire spread. 

Chapter 6 
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Furthermore, whilst WHAM! focuses on representing anthropogenic agency, humans also have 

many indirect influences on fire regimes globally (Chapter 2). Multiple authors have argued that 

anthropogenic fragmentation of vegetation is a key process in global fire regimes (e.g. Archibald et 

al., 2012; Driscoll et al., 2021; Harrison et al., 2022). Fragmentation can have opposite effects across 

ecosystems – with logging and degradation increasing fire in otherwise fire-independent forests, and 

reduced fuel connectivity reducing burned area in grassland and savannah ecosystems (Rosan et al., 

2022). Therefore, a simple representation of these two fragmentation processes is implemented.  

A model calibration is then used to rule-out implausible parameter model values (McNeall et al., 

2016) and identify a pareto-optimal model parameter space. Use of a pareto parameter space (as 

opposed to a single optimal parameter set) allows model performance against multiple evaluation 

metrics to be considered simultaneously (Dumedah et al., 2012; Koppa et al., 2019).  

After calibration, pareto-optimal parameter sets are compared with a baseline version of INFERNO, 

to assess how far the WHAM!-INFERNO ensemble improves model capacity to reproduce observed 

patterns of fire globally. This baseline version of INFERNO is an offline implementation of INFERNO 

v1.0 as described in Mangeon et al., (2016). In contrast to the ‘online’ version of INFERNO, in which 

outputs are passed to INFERNO by JULES dynamically, the offline version uses a static set of outputs 

from JULES to force INFERNO’s underlying equations.  

An important and open question in fire science is why observed global burned area is decreasing, 

particularly in sub-Saharan Africa (Andela et al., 2017). Therefore, analysis of WHAM!-INFERNO 

outputs focuses on exploring drivers of inter-annual change at continental-scale, particularly in the 

overlapping period of historical model runs and the GFED5 observational record (2001-2014).  

The second question that WHAM! is applied to is how anthropogenic fire use and management may 

evolve in the future under different scenarios of climatic and socioeconomic change. This is done 

through model runs for the Shared Socioeconomic Pathways (SSPs) for the period 2015 to 2100. The 

SSPs are common future scenarios of both environmental and socioeconomic change used in Model 

Intercomparison Projects, and to support IPCC assessment reports (O’Neill et al., 2017).  

Methods for both model applications are described in Section 6.2, and their respective results in 

Section 6.3. The discussion (Section 6.4) draws out themes from both model applications to assess 

new insights into the socio-ecological dynamics of global fire regimes. 
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6.2 Methods 
As noted in the Introduction, this chapter describes two applications of WHAM! The first, the 

development of the offline WHAM!-INFERNO model ensemble, is described in Sections 6.2.1 and 

6.2.2. The structure of the model ensemble is shown in Figure 6.1. Section 6.2.3 describes 

calibration, evaluation and analysis of model outputs; this includes description of the offline 

implementation of INFERNO used for evaluation of WHAM!-INFERNO performance. Following this, 

the application of WHAM! for model experiments using the Shared Socioeconomic Pathways (SSPs) 

is described. Section 6.2.4 details the set-up of WHAM! model runs for the SSPs, including sourcing 

of forcing data. Section 6.2.5 then describes methods used to make new projections of variables for 

the SSPs, where no existing spatial projection could be located. Running the WHAM!-INFERNO 

ensemble for the SSPs is a medium-term ambition, and the steps required to deliver this are 

addressed in the discussion.  

Code to run and analyse the combined WHAM!-INFERNO ensemble is written in R version 4.2.2 (R 

Core Team 2022), using the ‘raster’ library version 3.6-20 (Hijmans et al., 2023). Code and data to 

run and analyse outputs of the combined model are made available on Zenodo (Perkins et al., 

2023b). 

 

6.2.1 Combined model inputs 
Both WHAM! and JULES-INFERNO standalone outputs were used as inputs to the combined model. 

WHAM! outputs used are those described in Chapter 5. Therefore, as with WHAM! standalone 

historical runs, historical runs of WHAM!-INFERNO span 1990 to 2014. JULES-INFERNO outputs are 

taken from the 6th Coupled Model Intercomparison Project (CMIP6; Wiltshire et al., 2020). 

Therefore, both models were run at a spatial resolution of 1.875º x 1.25º; WHAM! outputs are 

annual, whilst as per CMIP6, JULES-INFERNO outputs are aggregated monthly means. Therefore, the 

ensemble runs at a monthly timestep, and WHAM! outputs for a given year are assumed to be 

uniformly distributed across calendar months. Hence, the model ensemble is a ‘periodic’ ensemble 

(sensu Robinson et al., 2018) – as WHAM! does not pass information at each of INFERNO’s monthly 

timesteps. In addition to these two models, three sets of secondary data were used as inputs: 

lightning ground strikes, road density and anthropogenic land covers – cropland, pasture, rangeland 

and urban. These inputs are detailed below, and an overview is given in Table 6.1.  
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Figure 6.1: Processes represented in the WHAM!-INFERNO model ensemble. Full arrows 

denote dynamic model calculations, whilst dashed lines denote static exchange of 

information. Hence, ecological inputs to WHAM! (Potential Evapotranspiration (PET), Net 

Primary Production (NPP) and Plant Functional Types (PFTs) were taken from JULES-

INFERNO model outputs and input to WHAM! as static variables prior to model ensemble 

calculations.  

 

Table 6.1: Overview of inputs to the combined WHAM!-INFERNO ensemble model. PFT = 

plant functional type. Data inputs for lightning strikes, road density and anthropogenic land 

covers were rescaled to the resolution of WHAM!-INFERNO (1.875º x 1.25º). Differing 

temporal resolutions of inputs were reconciled as noted in Section 6.2.1. 

Coupled model input Source  Units 
Temporal 
resolution 

Managed burned area WHAM! Cell fraction (0-1)  Annual 

Unmanaged anthropogenic fires WHAM! Number Count km-2 Annual 

Fire suppression WHAM! Cell fraction (0-1) Annual 

Distribution of PFTs JULES-INFERNO Cell fraction (0-1)  Monthly 

Flammability per PFT JULES-INFERNO Dimensionless (0-1) Monthly 

Burned area per fire per PFT JULES-INFERNO km-2 Fixed (n/a) 

Lightning – ground strikes Christian et al., (2003) Number km-2  
Fixed (single 
daily average) 

Road density Meijer et al., (2018) m2 km-2 Annual 

Anthropogenic land cover Hurtt et al., (2020) Cell fraction (0-1) Annual 
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6.2.1.1 WHAM! inputs 

WHAM! inputs to the coupled model comprised managed burned area as a fraction of each cell, 

unmanaged fires in km-2 yr-1 and the distribution of Anthropogenic Fire Regimes (pre-industrial, 

transitional, industrial and post-industrial). Anthropogenic fire regime outputs were used to 

calculate the intensity of fire extinguishing (or ‘suppression’; 6.2.2.2 below). WHAM! inputs taken 

were the mean of the 100 runs described in Chapter 5. 

 

6.2.1.2  JULES-INFERNO inputs 

INFERNO calculates burned area from fires with two key components. The first is a mean global 

burned area per Plant Functional Type – a set of PFT-specific model free parameters. Model 

parameters for burned area per PFT were sourced from Burton et al., (2019); these are stated in km-2 

fire-1, but were converted to a fraction of the pixel burned per fire (0-1). The second component of 

INFERNO burned area calculations is flammability, which INFERNO calculates as a function of leaf 

Carbon and soil Carbon pools, vapour pressure, precipitation, and soil moisture (Mangeon et al., 

2016). Flammability is therefore important in capturing the impact of both climate and spatial 

heterogeneity in vegetation on fire regimes. Flammability is calculated per Plant Functional Type in 

each grid box at each timestep. Flammability outputs, as well as the underlying distribution of plant 

functional types, were sourced from model runs conducted for CMIP6. Finally, as in JULES-INFERNO 

standalone (Mathison et al., 2023), numbers of lightning strikes were sourced from the Lightning 

Imaging Sensor—Optical Transient Detector (Christian et al., 2003).  

 

6.2.2 Combining WHAM! and JULES-INFERNO 
As noted in the introduction, the combined WHAM!-INFERNO model was a ‘prescribed’ model 

coupling (sensu Robinson et al., 2018). As such, whilst projections of global burned area depend on 

calculations involving outputs of both models, information transfer was one way: from WHAM! to 

INFERNO (as detailed in Section 6.2.2.1). This meant that, whilst socio-economic and biophysical 

drivers of fire regimes could be integrated on an annual timestep, inter-annual feedbacks could not 

be captured. For example, in a fully-coupled (or ‘feedbacks’ model ensemble per Robinson) 

ensemble, burned area would impact the distribution of plant functional types (PFTs), and hence 

ecosystem function such as net primary production, at the next timestep (Ford et al., 2021). 

However, in this model ensemble, PFT distributions were passed to WHAM! as a prescribed data 

input (Figure 6.1). 
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Therefore, for each model year, annual burned area from managed fire was taken directly from 

WHAM!, with 
1

12
 assigned to each calendar month. For unmanaged fire, the number of 

anthropogenic fires (km-2 yr-1) was taken from WHAM!, but their burned area was calculated by 

JULES-INFERNO. Therefore, description of model integration here focuses on calculating the burned 

area of unmanaged fires (Section 6.2.2.1), which also includes a new, empirical representation of fire 

extinguishing (or ‘suppression’; Section 6.2.2.2).  Finally, representation of landscape fragmentation 

is described in Section 2.2.3. A process flow, describing calculation of burned area from unmanaged 

fire is given in Figure 6.2. 

 

6.2.2.1 Unmanaged fire 

6.2.2.1.1 Number of fires 

In the original Mangeon et al. (2016) conception of INFERNO, the numbers of ignitions from lightning 

strikes are calculated as follows:  

𝐼𝐿 = 7.7 × 𝐿𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔 × (1 − 𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)     (6.1) 

where 𝐼𝐿is the number of ignitions from lightning strikes in a given model timestep, 𝐿𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔 is the 

number of lightning strikes and 𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 is a population density dependent suppression 

function. The structure of this calculation was kept with two changes. Firstly, the suppression 

function was replaced with an empirically-defined representation of suppression intensity (Section 

6.2.2.2); and secondly the empirically-defined linear scaling parameter (=7.7) was replaced with a 

free parameter (𝜆; Table 6.2) to allow re-calibration.  

In the WHAM!-INFERNO ensemble, calculation of lightning fires is integrated with unmanaged 

anthropogenic fire numbers from WHAM! as follows: 

𝐹𝑖𝑟𝑒𝑠𝑈𝑀 = 𝐴𝑟𝑠𝑜𝑛 + 𝐸𝑠𝑐𝑎𝑝𝑒𝑑 + (1 − 𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛) ∗ (𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 +  𝐿𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔) (6.2) 

where 𝐹𝑖𝑟𝑒𝑠𝑈𝑀 is the annual number of unmanaged fires per grid box per year, 𝐴𝑟𝑠𝑜𝑛 and 𝐸𝑠𝑐𝑎𝑝𝑒𝑑 

fire numbers are the number of fires km-2 yr-1 taken from WHAM! outputs, and 𝐿𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔 is the 

number of lightning fires calculated from mean daily ground strikes as in equation (6.1). For both 

arson and background fires, given limited available data for their parameterisation and the 

impossibility of prior evaluation of these standalone model outputs, free parameters were included 

to allow calibration. Escaped fires were not scaled with a free parameter for reasons of model 

coherence (Section 6.2.3). 
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Figure 6.2: Calculation of burned area from unmanaged fires in the WHAM!-INFERNO 

coupled model.
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The background rate of accidental and miscellaneous fires (𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) in (6.2) was intended to 

be parameterised using the empirically-derived representation in WHAM! (Chapter 5). However, this 

was found to agree poorly with observations. Therefore, a simple globally constant rate is used to 

capture fires that are not arson, lightning or escaped managed fires. The constant rate maintains an 

aspect of INFERNO, in which a uniform ‘ignition’ rate is an option. The poor performance of the 

empirical background rate function likely stemmed from the issues with collating this data in DAFI, 

including the skewed data sample for accidental and incidental fires, as well as differences in 

definitions and recording practices across countries and government agencies (Chapter 3).  

Fire suppression (Section 6.2.2.2) is applied to background and lightning fires, but not to arson and 

escaped fires. This is for ontological reasons, as follows. INFERNO assumes that suppressed ignitions 

have no burned area. However, in DAFI, which drives WHAM!’s calculation of arson and escaped 

fires, numbers of fires are recorded, therefore by definition these have burned area > 0. As such, it is 

illogical to apply modelled suppression to them. By contrast, suppression is applied to the 

background rate. Firstly, where the background rate was calculated using a constant, clearly this did 

not account for the impact of suppression. When calculated empirically, more than 50% of 

accidental fires in DAFI were <1ha (mean 0.72ha; Chapter 3), often occurring in dense areas at the 

wildland urban interface (WUI). Therefore, suppression should be applied to capture the reality that 

WUI areas are typically home to intensive fire suppression (Elia et al., 2016; Mell et al., 2010). 

 

6.2.2.1.2 Burned area per fire 

After calculation of the numbers of unmanaged fires per pixel (𝐹𝑖𝑟𝑒𝑠𝑈𝑀), these were then converted 

to burned area. In its original conception, INFERNO calculates the number of fires as: 

𝐹𝑖𝑟𝑒𝑠 = 𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑠 ∗ 𝐹𝑙𝑎𝑚𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (6.3) 

In other words, both humans and lightning are conceptualised as producing ignitions, which may or 

may not become fires based on the flammability of the surrounding vegetation (Chapter 5, Figure 

5.1). By contrast, because most human fires are started deliberately, WHAM! does not output 

numbers of ignitions, but numbers of fires directly (Figure 6.2). However, whilst vegetation 

flammability plays the ontological role of translating ignitions to fires in INFERNO, it also plays an 

important functional role: capturing geographic variation in the capacity and tendency of the 

vegetation to sustain unmanaged fire. This is because INFERNO calculates burned area per fire with a 

simple global mean value per Plant Functional Type. Therefore, simply removing flammability from 

the calculation and taking numbers of unmanaged fires from WHAM! was not a feasible option. 
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Table 6.2: Model free parameters, their initial, maximum and minimum values in WHAM!-

INFERNO calibration There is no mean burned area for cropland PFTs as it was 0 in all 

cases, so replaced by outputs from WHAM! Given the substantial uncertainty around 

parameter values, values were sampled from a uniform distribution around an initial value. 

Grass and pasture burned area per PFT were given two values for C3 and C4 respectively. 

 

Parameter name Parameter function Initial value 
 

Minimum value Maximum 
value 

TreeBL_BA 
Mean global BA for 
broadleaf trees 

1.7 0.85 2.55 

TreeNL_BA 
Mean global BA for 
needleleaf trees 

1.7 0.85 2.55 

Grass_BA 
Mean global BA for grass 
PFTs (C3 & C4) 

3.2 1.6 4.8 

Shrub_BA 
Mean global BA for 
shrubs 

3.2 1.6 4.8 

Pasture_BA 
Mean global BA for 
pasture PFTs (C3 & C4) 

2.7 1.35 4.05 

δ1 
Scaling managed burned 
area from pasture fires 

1 0.5 1.5 

δ2 
Scaling managed burned 
area from vegetation fires 

1 0.5 1.5 

𝜎1 
Scaling background 
ignitions 

0.03 0.01 0.05 

𝜎2 Scaling arson fires 30 10 50 

𝜆 
Scaling parameter for 
lightning strikes 

7.7 3.85 11.55 

𝛷 
Harmonising model 
ontologies of ignitions & 
fires 

700 350 900 

Sup_PI 
Rate of extinguished fires 
for the pre-industrial AFR 

0 0 0.05 

Sup_Trans 
Rate of extinguished fires 
for the transitional AFR 

0.05 0 0.1 

Sup_Intense 
Rate of extinguished fires 
for the industrial AFR 

0.9 0.8 1 

𝜌 
Scaling impact of road 
density on fire sizes 

8.91 4.455 13.4 

Λ 
Impact of logging on 
burned area in forests  

1.5 1 2.25 

𝛼 
Threshold for impact of 
prior fires on fire size 

0.2 0.1 0.4 

𝛽 
Rate of decline in fire size 
due to prior fires 

0.2 0.1 0.4 
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The solution adopted is to multiply WHAM! unmanaged fires by INFERNO flammability, but to 

rescale these with a free parameter. This leaves a burned area calculation from unmanaged fires of: 

𝐵𝐴𝑈𝑀 = 𝐹𝑖𝑟𝑒𝑠𝑈𝑀 ∗ 𝛷 ∗ ∑ 𝑃𝐹𝑇 ∗  𝐹𝑙𝑎𝑚𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑃𝐹𝑇 ∗ 𝐵𝐴𝑃𝐹𝑇

𝑃𝐹𝑇=𝑛

𝑃𝐹𝑇 =1

 (6.4) 

where 𝐵𝐴𝑈𝑀is the annual burned area from unmanaged fires as a fraction of each model pixel; 𝑃𝐹𝑇 

is the fraction of each model pixel (0-1) occupied by a given PFT; 𝐹𝑙𝑎𝑚𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑃𝐹𝑇is a PFT-specific 

dimensionless adjustment (0-1) reflecting spatiotemporal differences in the combustibility of 

vegetation; 𝐵𝐴𝑃𝐹𝑇 is the PFT-specific mean burned area per fire from JULES-INFERNO parameters as 

a pixel fraction (0-1); and 𝛷 is scaling factor reflecting the differing model ontologies of WHAM! and 

JULES-INFERNO. 

 

6.2.2.2 Fire suppression 

As noted above, fire suppression – here denoting the extinguishing of active fires – was included in 

WHAM!-INFERNO calculations to reduce numbers of background and lightning fires. Rather than 

being driven by individual Agent Functional Types (AFTs), the degree of suppression was treated as a 

meta-effect, emerging at landscape-level from interactions between AFTs and their respective fire 

management preferences (Cammelli and Angelsen, 2019; Cammelli et al., 2019). Therefore, similar 

to the level of fire-control and rate of arson, fire suppression was calculated as a function of 

distribution of Anthropogenic Fire Regimes (AFRs) in WHAM! outputs. 

Fitting with WHAM!’s empirical design, suppression was modelled using data from DAFI (Chapter 3). 

AFR outputs from WHAM! were sampled at case study points with information on fire extinguishing. 

Fire extinguishing in WHAM! was recorded as with all aspects of suppression on a 0-3 ordinal scale: 0 

= None, 1 = Limited, 2 = Moderate or Traditional, and 3 = Intensive. To convert this to a 0-1 

dimensionless scaling factor as in the original INFERNO conception, numeric values on this same 

scale were adopted for each ordinal level (Table 6.2). This resulted in three free parameters for the 

levels from 1-3, whose values were determined during model calibration. The absence of fire 

suppression in DAFI was always treated as a suppression rate of 0. These three parameter values 

were then used as the dependent variable in a linear model using the modelled distribution of AFRs 

as independent variables.    
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6.2.2.3 Fragmentation  

Alongside direct impacts of humans on fire regimes through starting and extinguishing fires, humans 

also impact fire regimes by fragmenting fuels (Jones et al., 2022). Fragmentation is particularly 

pertinent in flammable grassland and savannah ecosystems, in which these effects may be the 

dominant mode of anthropogenic influence on fire regimes by decreasing fire size (Archibald et al., 

2013). Neither WHAM! nor INFERNO directly calculate the impact of landscape fragmentation on 

fire. However, Haas et al., (2021) demonstrate the efficacy of using global road density and cropland 

cover as proxies for vegetation fragmentation, and this finding was used to develop a simple 

parameterisation of fragmentation in the coupled model.  

Fragmentation effects were applied to unmanaged fires; managed burned area was not altered for 

fragmentation effects, as these would already be implicitly accounted for in the observations 

captured in DAFI. INFERNO to some degree considers the impacts of croplands on fire, by setting the 

global burned area for cropland PFTs to less than that of other vegetation (and in all cases <1km2 

fire-1; Mangeon et al., 2016; Burton et al., 2019). As WHAM! now directly provides outputs for 

cropland fire, burned area per unmanaged fire in the coupled ensemble was set to 0. However, 

INFERNO does not account for the role of roads (and road density) in fragmenting landscapes and 

reducing fire size. Therefore, this was parameterised as a simple negative exponential function: 

 

𝐵𝐴𝑈𝑀_𝑓𝑟𝑎𝑔 =  𝐵𝐴𝑈𝑀 ∗ (1 −
ln(𝑅𝐷)

𝜌
) (6.5) 

 

where 𝐵𝐴𝑈𝑀 and 𝐵𝐴𝑈𝑀_𝑓𝑟𝑎𝑔 are annual burned area per pixel (0-1) from unmanaged fire before 

and after adjustment for fragmentation effects, 𝑅𝐷 is road density and 𝜌 a scaling parameter, whose 

starting value was the maximum of the natural logarithm of road density over the historical period 

(Table 6.2).  
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By contrast, logging of wet, fire-prone forests can lead to increased fire (both numbers of fires and 

fire size), as gaps in the canopy lead to drying on the forest floor (Cochrane et al., 2009). A simple 

representation of this was implemented by increasing the mean burned area per fire for broadleaf 

tree PFTs given the presence of the Logging AFT in WHAM! outputs. The values of mean burned area 

for broadleaf tree PFTs therefore became: 

𝐵𝐴𝑏𝑟𝑜𝑎𝑑𝑙𝑒𝑎𝑓| 𝑙𝑜𝑔𝑔𝑖𝑛𝑔 =  𝐵𝐴𝑏𝑟𝑜𝑎𝑑𝑙𝑒𝑎𝑓 ∗  Λ(𝐿𝑜𝑔𝑔𝑖𝑛𝑔) (6.6) 

where 𝐵𝐴𝑏𝑟𝑜𝑎𝑑𝑙𝑒𝑎𝑓 is the fraction of a model pixel burned per fire for broadleaf tree PFTs;  

𝐵𝐴𝑏𝑟𝑜𝑎𝑑𝑙𝑒𝑎𝑓| 𝑙𝑜𝑔𝑔𝑖𝑛𝑔 is this parameter value when adjusted for logging, , 𝐿𝑜𝑔𝑔𝑖𝑛𝑔 is the fraction 

of tree cover in a cell occupied by WHAM!’s logging AFT, and Λ a free parameter. 

 

6.2.2.4 Combining managed and unmanaged fire 

JULES-INFERNO typically runs at a timestep of between 30-60 seconds (Clark et al., 2010). This is 

required for the stability of model equations and has the advantage of capturing temporal 

fluctuations in vegetation flammability. As such, as fire burns in a landscape, INFERNO will increase 

the amount of bare soil in a given model pixel, which reduces fuel availability and the amount of 

area burned from subsequent fires until vegetation resprouts (Burton et al., 2019). However, as 

human decision-making regarding fire is not meaningful to represent at such fine temporal scales, 

managed fire is output at an annual timestep by WHAM! For these reasons, calculating the 

combined burned area of managed and unmanaged fires required an adjustment to account for the 

effect of preceding fires:  

𝐵𝐴𝑡𝑜𝑡 = 𝐵𝐴𝑀𝑎𝑛𝑎𝑔𝑒𝑑 + 𝐵𝐴𝑈𝑀 ∗  𝛾 (6.7) 

where 𝐵𝐴𝑀𝑎𝑛𝑎𝑔𝑒𝑑 is burned area from managed fire, 𝐵𝐴𝑡𝑜𝑡 is total burned area and 𝛾 a function 

representing the impact of preceding fires on unmanaged burned area. Managed fire was not 

adjusted for effects of antecedent fire for several reasons: firstly, because WHAM! has its own 

internal calculation for including fuel limitations in agent calculations; secondly, because WHAM! 

outputs are empirically grounded, derived from data that would include such limitations to a degree; 

and thirdly, because many anthropogenic fires are lit to deliberately reduce rates of unmanaged fire.  
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The 𝛾 function was calculated using a linear function after a threshold:  

        𝛾 = {
1  𝑖𝑓 𝐵𝐴𝑈𝑀 ≤ 𝛼     

𝛽      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}       (6.8) 

where 𝛼 is a free parameter representing a threshold burned fraction of a cell below which fuel 

availability is not limiting, whilst 𝛽 is a further free parameter capturing the rate of decay in burned 

area once this threshold is reached. This functional form was chosen as it approximates the 

behaviour observed by Archibald et al., (2013), who explored the impact of fragmentation on burned 

area in flammable ecosystems.  

 

6.2.3 WHAM!-INFERNO Calibration 
The calculations set out in Section 6.2.2 resulted in 18 free parameters, to which two additional 

parameters were added to account for uncertainty in WHAM! managed fire outputs, giving a final 

set of 20 free parameters (Table 6.2). Given that global and independent assessment of managed 

pasture fires and managed vegetation fires (comprising crop field preparation, hunting and 

gathering, pyrome management and vegetation clearance) was not possible, two additional free 

parameters were added reflecting the unexplored uncertainty in these WHAM! outputs. For this 

reason, no free parameter was added to the rate of escaped fires (Section 6.2.1): the rate of escaped 

fires is implicitly changed with the rate of managed burned area and altering both processes would 

have led to implausible rates of escaped fire in some model parameter sets.  

Therefore, these 20 parameters formed the basis of a perturbed parameter ensemble. The 

overriding objective was to advance understanding of the socio-ecological drivers of fire regimes of 

the recent past. This was done in two stages, firstly by ruling out ‘implausible’ parameter sets, and 

then by identifying a set of pareto optimal parameter sets. This allowed, firstly, the evaluation of 

different model processes in capturing historical fire regimes, and secondly overall evaluation of the 

performance of the WHAM!-INFERNO ensemble.  

A total of 10,000 parameter sets were sampled from the distributions given in Table 6.2 using a 

minimax latin hypercube sampling design (Carnell 2022). Such a sampling design allows for robust 

exploration of the model parameter space in a computationally efficient way (Florian, 1992). 

Parameter limits were defined as +-50% of the default values, except for the case of fire suppression, 

in which a narrower range could be defined ontologically from the ordinal scale in DAFI, and for 

logging, in which a flammability adjustment < 1 was not ontologically consistent.  
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Using the resulting parameter sets, 10,000 model runs were conducted of the WHAM!-INFERNO 

ensemble, each with a perturbed parameter set and compared with the recent GFED5 global burned 

area product (Chen et al., 2023). The comparison (Section 6.2.3.1) was calculated for each run, as 

well as global burned area, and correlation (r) with a square root transformation applied. These 

latter two metrics were those used in the FIREMIP (Teckentrup et al., 2019), and so were used to 

calculate the pareto optimal parameter space of the model (Section 6.2.3.2). Performance of the 

model in the pareto space was then compared against a baseline model – an offline version of the 

INFERNO DGVM (Section 6.2.3.3) – which was run using 10,000 parameter sets, sampled in a similar 

way. 

 

6.2.3.1 Parameter implausibility assessment – history matching 

History matching is the process of constraining the parameter space of a model using observations 

(Craig et al., 1997). A common method of constraining model parameter spaces is to ‘rule out’ 

implausible parameter combinations which result in model outputs that are inconsistent with 

observations (Williamson et al., 2013). Parameter sets that satisfy the implausibility criteria area are 

deemed ‘not yet ruled out’, whilst in the event an implausibility assessment returns a null parameter 

space, the model is assessed to be structurally unsuitable (Williamson et al., 2015). Model 

implausibility, the measure used to rule out parameter sets, is denoted as I and is calculated as: 

 

      𝐼 = |
𝑦𝑚𝑜𝑑 −𝑦𝑜𝑏𝑠

√(𝜎𝑚𝑜𝑑
2 +  𝜎𝑜𝑏𝑠

2)
|         (6.9) 

 

where 𝑦𝑚𝑜𝑑and 𝑦𝑜𝑏𝑠 are the model outputs and observations respectively; and 𝜎𝑚𝑜𝑑 and 𝜎𝑜𝑏𝑠 are 

the model and observational error, respectively. Applying the 𝐼 calculation on a pixel-by-pixel basis 

requires complicated assessment of spatial and temporal autocorrelations, given the resulting non-

independence of observations and model outputs (Edwards et al., 2014; Rougier and Beven, 2013). 

Furthermore, the goal of implausibility assessment here is not to optimise model parameter values, 

but rather to provide an initial filtering of parameter space. Therefore, the mean global burned area 

across 2001-2014 is used as the basis of the implausibility calculation.  
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As such, observational error can be measured directly and here has a value of 106.72 – the product 

of the mean annual burned area in the GFED5 product (802.5Mha) and the Dice similarity coefficient 

of Sentinel-2 burned area observations (0.133). The Dice similarity coefficient (also known as the F1-

Score) is used as a measure of true positive detection accuracy in image processing (Lin et al., 2020). 

The resulting value (106.72Mha) is a conservative estimate of observational error: GFED5, against 

which model evaluation was conducted, does not use Sentinel-2 burned area directly, but rather 

scales MODIS burned area observations to Sentinel-2 and Landsat outputs using empirical 

relationships (Chen et al., 2023). Given this, the GFED5 product does not report observational error 

directly, and so the underlying Sentinel-2 error is used (Roteta et al., 2019).  

Model error, also referred to as structural error, is used to define acceptable divergence from 

observations, and therefore must be set by the modeller in relation to the domain and research 

question (Ritz et al., 2015). Here, we adopt the error in the ensemble of models from the first Fire 

Model Intercomparison Project (FIREMIP; Teckentrup et al., 2019) – specifically the median 

disagreement between the mean burned area of the model ensemble and the three remote sensing 

products used for evaluation – 68.33Mha. The median was chosen to down-weight outlier outputs 

from the FIREMIP ensemble. The result was a denominator value for (6.9) of 126.72 - i.e. 

√(68.332 + 106.722). Adopting a commonly-used and theoretically-robust threshold (Pukelsheim, 

1994), parameter sets that produced an I value greater than 3 (equivalent to +-380.2Mha) were 

taken as implausible, with remaining parameter combinations taken as not ruled out yet (NROY). 

 

6.2.3.2 Pareto optimal parameter space 

From the set of parameters ‘not ruled-out yet’ by the implausibility assessment (hereafter NROY), 

the pareto optimal parameter sets were defined. Intuitively, pareto optimality refers to a trade-off 

space between multiple criteria in which one criteria cannot be further increased without reducing 

performance of another (Gupta et al., 1998). Or, more formally, a parameter space in which 

alternative sets are all ‘non-dominated’ against a set of objective functions (Lu et al., 2011). A 

parameter set 𝑥1 ∈ 𝑋 is considered to dominate another parameter set 𝑥2 ∈ 𝑋 if for a vector of 

objective functions �⃗� of length 𝐿: 

∀𝑖 ∈ {1, 2 … 𝐿} 

𝑦𝑖(𝑥1) ≥  𝑦𝑖(𝑥2)  (6.10) 

Hence in a pareto parameter space, no parameter sets would satisfy the inequality in (6.10).  
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The strength of pareto-optimal parameter selection is that it enables simultaneous evaluation of 

performance against multiple model evaluation criteria (Koppa et al., 2019). However, the sets of 

parameter values returned by pareto optimisation are unlikely to be representative of the total 

model uncertainty - including data and structural uncertainty - that could be captured by Bayesian 

model calibration (Lu et al., 2017). Here, pareto optimisation is used for parameter selection rather 

than Bayesian calibration because of the early stage of model development; comprehensive model 

uncertainty quantification with Bayesian calibration may be more pertinent following future 

refinements to WHAM! (Chapter 7; Section 7.3). 

Here, the two criteria chosen for assessing model performance were those used in the recent 

FIREMIP: global burned area and Pearson’s r (Teckentrup et al., 2019). The global burned area metric 

used was simply the difference in Mha between WHAM!-INFERNO outputs and GFED5 global burned 

area (802.5Mha). For Pearson’s r, as in Teckentrup et al., (2019), a square root transformation was 

applied to both GFED5 burned area and WHAM!-INFERNO outputs before calculating correlations. 

Therefore, model outputs for NROY parameter sets outside of the pareto parameter space 

contained more disagreement with observations (as measured by either global burned area or their 

pixel-based correlation) than those within the pareto parameter space. The parameters whose 

marginal distributions were significantly associated with whether a given parameter set was ruled-

out, NROY or pareto optimal were then assessed using Kruskal-Wallis tests, using a Bonferroni 

correction on the resulting 20 p-values.  

 

6.2.3.3 Comparison with baseline model – INFERNO v1.0 offline 

To assess how far improved representation of anthropogenic influences on fire regimes increase 

WHAM!-INFERNO’s capacity to reproduce burned area observations, outputs of the pareto 

parameter space were compared against a baseline model. This was an offline version of INFERNO 

v1.0 (Mangeon et al., 2016; hereafter ‘the baseline model’), and followed that model’s structure as 

closely as possible in an offline format. INFERNO v1.0 calculates burned area as: 

      𝐵𝐴𝐼𝑁𝐹𝐸𝑅𝑁𝑂 = 𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑠 ∗ 𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ∗ 𝐹𝑙𝑎𝑚𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝐵�̂�𝑃𝐹𝑇 (6.11) 

Therefore, flammability and burned area per PFT (𝐵�̂�𝑃𝐹𝑇) were taken from the same sources as 

WHAM!-INFERNO (Table 6.1). Lightning ignitions were calculated using equation (6.1), whilst as in 

Mangeon et al., (2016), anthropogenic ignitions and suppression were calculated respectively as:
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𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑠𝐴 = (6.8 ∗ 𝑃𝐷−0.6) ∗ (0.03 ∗ 𝑃𝐷) (6.12) 

𝑆𝑢𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 1 − 7.7 ∗ (0.05 + 0.9 ∗ 𝑒−0.05∗𝑃𝐷) (6.13) 

where 𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑠𝐴are anthropogenic ignitions, and PD is population density. Two scaling factors {6.8, 

7.7} in these equations were first defined by Pechony and Shindell (2009) to calibrate population 

density with observed fire counts in GFED v4. Therefore, these were replaced by free parameters to 

enable recalibration with the new GFED5 (Table 6.3).     

 

Table 6.3: Free parameters in INFERNO v1.0 offline -  a baseline model used for evaluation 

of performance of WHAM!-INFERNO. Parameters’ initial, maximum and minimum values in 

model calibration are shown. The baseline model was run with and without the use of road 

density in constraining global fire sizes. Given the substantial uncertainty around parameter 

values, values were sampled from a uniform distribution around an initial value. Cropland, 

grass and pasture burned area per PFT were given two values for C3 and C4 respectively. 

Parameter name Parameter function Initial value 
 

Minimum value Maximum 
value 

TreeBL_BA 
Mean global BA for 
broadleaf trees 

1.7 0.85 2.55 

TreeNL_BA 
Mean global BA for 
needleleaf trees 

1.7 0.85 2.55 

Grass_BA 
Mean global BA for grass 
PFTs (C3 & C4) 

3.2 1.6 4.8 

Shrub_BA 
Mean global BA for 
shrubs 

3.2 1.6 4.8 

Pasture_BA 
Mean global BA for 
pasture PFTs (C3 & C4) 

2.7 1.35 4.05 

Cropland_BA 
Mean global BA for 
cropland PFTs (C3 & C4) 

3.2 1.6 4.8 

𝜎1 
Scaling parameter for 
anthropogenic ignitions 

1 1.5 0.5 

𝜆 
Scaling parameter for 
lightning strikes 

7.7 3.85 11.55 

Sup 
Suppression scaling 
parameter 

1 0.5 1.5 

𝜌 
Scaling impact of road 
density on fire sizes 

8.91 4.455 13.4 

𝛼 
Threshold for impact of 
prior fires on fire size 

0.2 0.1 0.4 

𝛽 
Rate of decline in fire size 
due to prior fires 

0.2 0.1 0.4 



187 
 

Two further amendments were in the baseline model from INFERNO v1.0. Firstly, as in WHAM!-

INFERNO, equations (6.7) and (6.8)  were used to account for prior fires restricting the connectivity 

and availability of vegetation. The second change made was to run the baseline model with and 

without the road density adjustment (Section 6.2.2.3; equation 6.5) applied in WHAM!-INFERNO to 

the mean burned area per plant functional type parameters to represent fuel fragmentation. This 

final change was made to allow assessment of how far any improved performance in WHAM!-

INFERNO was due to direct anthropogenic impacts on fire regimes (i.e. starting and extinguishing 

fires) vs indirect fragmentation effects. Furthermore, recent work on INFERNO has found including 

HDI as a representation of fire suppression improves the model’s capacity to reproduce GFEDv4 

(Teixeira et al., 2023) suggesting that improved representation of societal infrastructure 

developments might help to improve model outputs. Therefore, INFERNO v1.0 run offline without 

road density adjustment is named ‘INFERNO_offline’ and INFERNO run offline with the road density 

adjustment is named ‘INFERNO_road’.   

Outputs from the two versions of the baseline model were analysed in the same way to the WHAM!-

INFERNO ensemble – firstly by ruling out implausible parameter combinations, and secondly by 

defining a pareto optimal parameter space. The performance of the baseline model(s) and WHAM!-

INFERNO in this pareto space was then compared.  

 

6.2.4 WHAM! future runs for the Shared Socio-economic Pathways 

For WHAM! standalone model runs under the Shared Socio-economic Pathways (SSPs), WHAM! was 

set up as described in Chapter 5, with the addition of the suppression parameterisation, which was 

taken from the combined WHAM!-INFERNO model ensemble (Section 6.2.2.2). Where possible, 

forcing data for each of the SSPs were sourced from existing projections adopted by established 

model protocols (Table 6.4). These were the Coupled Model Intercomparison Project (CMIP; (Eyring 

et al., 2016), the Intersectoral Model Intercomparison Project (ISIMIP; (Rosenzweig et al., 2017) and 

the Scenario Modelling Intercomparison Project (ScenarioMIP; (O’Neill et al., 2016). Biophysical 

projections for the SSPs (potential evapotranspiration, net primary production) were taken from 

JULES outputs for CMIP6 model runs. The annual mean was taken from the monthly means provided 

in CMIP6 outputs. As primarily a diagnostic output, potential evapotranspiration was only available 

for SSP-RCP 1-2.6., 3-7.0 & 5-8.5. Therefore, these SSP-RCP combinations are those presented here.  
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Land cover data were taken from the LUH2 product, which was also used for CMIP6 (Hurtt et al., 

2020). Population density projections were those of Jones and O’Neill, (2016) used for both ISIMIP 

and CMIP. Gridded GDP data were taken from the projections of Murakami et al., (2021) – these are 

spatially downscaled versions of the core GDP projections used for ScenarioMIP. However, no 

projections of the Human Development Index or Market Access for the SSPs could be located. 

Therefore, new projections of these were made, using the methods outlined in Section 6.2.5. 

 

Table 6.4: Overview of forcing data used for WHAM! model runs under the Shared 

Socioeconomic Pathways (SSPs). Data were available at an annual timestep for all years, 

aside from topography, which was treated as a static variable.  

 

Variable type Variable name Source 

Socio 
economic 

Population density 
Jones & 
O'Neill 2016 

 Gross Domestic Product 
Murakami et 
al., 2021 

 Human Development 
Index 

Own 
projections 

 Market access 
Own 
projections 

Land cover & 
Land use 

Fractional land cover 
(anthropogenic) 

Hurtt et al., 
(2020) 

 Land cover composition 
(natural) 

Wiltshire et 
al., (2020) 

Biophysical 
Potential 
evapotranspiration 

Wiltshire et 
al., (2020) 

 Ecosystem net primary 
production 

Wiltshire et 
al., (2020) 
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6.2.5 New data projections 
No spatial projections of the Human Development Index and Market Access for the SSPs could be 

located so new data projections were needed, as now described in this section. Outputs of these 

new projections are shared as Appendix 6A. 

 

6.2.5.1 Human Development Index 

The human development index (HDI) is comprised of three indices – ‘a long and healthy life’ 

(hereafter ‘health index’), ‘access to education’ (hereafter ‘education index’), and ‘a decent standard 

of living’ (hereafter ‘economic index’; UNDP 2018). Each component index is scaled 0-1: 

𝑖𝑛𝑑𝑒𝑥𝑖,𝑗 =
( 𝑣𝑎𝑙𝑢𝑒𝑖,𝑗 −  min𝑖)

(max𝑖 − min𝑖)
⁄       (6.14)      

where 𝑖𝑛𝑑𝑒𝑥𝑖,𝑗 is the value for the ith index in the jth country; 𝑣𝑎𝑙𝑢𝑒𝑖,𝑗 is a raw computed value of 

the given index, and max𝑖 / min𝑖 are prescribed thresholds. The overall index is then calculated as 

the geometric mean of the three components. The health index is based on life expectancy, with a 

maximum value of 85 years, and a minimum of 20. The education index is comprised of two parts: 

mean years of schooling (years of education participation in the adult population) the expected 

years of schooling (based on participation rates each year). Projections of the HDI were computed in 

two stages. Firstly, an annual, national-level projection was made for each country under each SSP 

from 2010-2100 (Section 6.2.5.1.1). Secondly, these national-level projections were downscaled to 

the sub-country units used by (Kummu et al., 2018) – for example USA or Brazilian States (!Section 

2.5.1.2). The resulting polygon-based maps were rasterised to the resolution of JULES-INFERNO 

(1.875º x 1.25º; Section 6.2.5.1.3). 

 

6.2.5.1.1 National-level projections 

For the health index, national-level life expectancy data were sourced from the United Nations 

Department of Economic and Social Affairs (UNDESA 2022). These are presented as a baseline, ‘high’ 

and ‘low’ scenario. The SSP narratives of O’Neill et al. (2017) describe SSP1 & 5 as having high health 

investments, SSP2 as having ‘medium’ health investments and SSP3 & 4 as having ‘low’ health 

investments. Therefore, the UN baseline scenario was interpreted as reflecting SSP2, the ‘low’ 

scenario as reflecting SSPs 3&4, and the ‘high’ scenario as SSPs 1&5. These projections were then 

used to calculate the health index at national level using equation (6.14).  
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The basis of the national-level education index is the projection of education participation of KC & 

Lutz (2017). However, the HDI education index is based on years of schooling, whilst KC & Lutz give 

fractions of the adult population with primary, secondary and tertiary education. To convert these 

population fractions into estimated years of schooling per person, they were multiplied by the global 

values of mean years per stage of education presented by Potančoková et al., (2014). These are 

estimates that may vary substantially by country, and so were adjusted with a linear bias correction 

(KC & Lutz 2017). This adjustment was made using a linear model of predictions against historical 

data for 2019 (the most recent year with historical data available). For the education index, biases 

were different across global regions (ANOVA, p < 2.2e-16), and therefore each sub-national unit’s 

world bank region was used as a categorical predictor variable. After this bias correction, the 

predictions of the education index achieved r2 = 0.850 for 2019 (Figure 6.3). Similarly, for the health 

index there were very slight differences between historical and calculations based on future 

projections, and after bias correction, predictions achieved r2 = 0.997 for 2019. 

 

 

Figure 6.3: Linear bias correction of modelled HDI indices (A) health, B) education) against 

historical data for 2019. The health index is reproduced almost exactly (r2 = 0.997). Two 

outliers in the health index are Syria and Yemen – sadly areas of current military conflict, 

leading to unreliable data. The education index has more uncertainty, though historical data 

is still reproduced effectively (r2 = 0.850).  
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The third element of the HDI is the economic index, based on gross national income per person 

(GNI), was more challenging to model. Calculations of GNI were attempted by adjusting GDP per 

capita with the remittance projections of Beneviste et al., (2021). However, the education and health 

indices alone were better able to reproduce historical HDI data (r2 = 0.810) than the three indices 

combined (r2 = 0.516). Therefore, the economic projections were discarded and replaced with an 

economic weight based on the relationship of the combined health and education indices and 

historical data (Section 6.2.5.1.3).  

 

6.2.5.1.2 Sub-national projections 

Downscaling of projections from national to sub-national level was conducted by calculating a down-

scaling factor for each sub-national unit based on historical data. The value of these downscaling 

factors was the ratio of the national-level index to the subnational unit in historical data. For years 

up to and including 2020, these values were calculated annually based on historical values. From 

2021 onwards, the value at 2020 was taken as a baseline. This was then adjusted for each scenario 

using the SSP Gini coefficient projections of Rao et al., (2019). Therefore, for location l, for the ith 

index, in scenario j at time t, the downscaling factor would be:  

𝐷𝐹𝑙,𝑖,𝑗,𝑡 = 𝐷𝐹𝑙,𝑖,𝑗,𝑡−1 + ((𝐷𝐹𝑙,𝑖,𝑗,𝑡−1 − 1) ×
 𝐺𝑖𝑛𝑖𝑙,𝑗,𝑡 − 𝐺𝑖𝑛𝑖𝑙,𝑗,𝑡−1

𝐺𝑖𝑛𝑖𝑙,𝑗,𝑡−1
)    (6.15) 

were 𝐷𝐹 is the downscaling factor, and 𝐺𝑖𝑛𝑖 the national-level Gini coefficient value. In other words, 

a fractional decrease in the Gini inequality coefficient in a given country would lead to a proportional 

fractional decrease in the inequality in the sub-national distribution of a given index, and vice versa. 

This left 10 sets of down-scaling factors for each year (1990-2100) for each sub-national unit: one for 

each of the two projected indices for each of the five SSPs. These were multiplied by the national-

level projection to give a sub-national scale projection of the health and education indices. 
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6.2.5.1.3 Combined index 

The calculations described in Sections 6.2.5.1.1 and 6.2.5.1.2 resulted in spatial projections of the 

Health and Education indices of the HDI across the SSPs. Before combining the indices, the sub-

national, polygon-based projections were rasterised to the resolution of JULES-INFERNO (1.875º x 

1.25º), taking the mean value where multiple polygons occupied a given pixel. The resulting gridded 

projections were combined by taking their geometric mean. The resulting map was combined with 

projections of the natural logarithm of GDP per capita; these were calculated with the population 

projections of Jones & O’Neill (2016) and GDP projections of (Murakami et al., 2021). These two 

variables - health and education combined indices, and the natural logarithm of GDP - became linear 

predictors of the historical HDI values from 1990-2015. The resulting linear model achieved r2 = 

0.938 and was used to adjust future projections of the combined health and education indices.  

 

6.2.5.2 Market Access 

The original market access data of (Verburg et al., 2011) was constructed by calculating the travel 

time to the nearest city or port for each pixel on a 1km2 grid. Replicating this calculation for the 

future, therefore, would not only require projections of city locations and sizes, but also of ports. 

Given that these have not be constructed, an alternate approach was adopted. A random forest 

regression was trained using the original data of Verburg et al., (2011) as a dependent variable, and 

secondary variables as independent variables (Table 6.5). This random forest regression achieved r2 

= 0.75, and was then used to calculate market access for the SSPs. To ensure coherence of model 

outputs, the projections of urban fraction, population density and GDP per capita used for the SSPs 

were the same as those used as direct forcing inputs to WHAM! for the SSP runs. 

 

Table 6.5: Sources of predictor variables in the random forest model of market access.  

Independent variable Historical data source SSP projection  

data source 

Urban fraction Hurtt et al., (2020) Hurtt et al., (2020) 

Population density CIESIN (2017) Jones & O'Neill 2016 

Road density Meijer et al., (2018) Meijer et al., (2018) 

GDP per capita Kummu et al., (2018) Murakami et al., (2021) 
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6.3  Results 
Results first explore the parameter space of WHAM!-INFERNO and benchmark models. Secondly, 

they compare WHAM!-INFERNO’s spatiotemporal projections with GFED5. In these two sections, 

results first present insights into the socio-ecological dynamics of global fire regimes before 

evaluating model performance. Thirdly, results are presented for SSP runs of WHAM! standalone.  

 

6.3.1 Model calibration  

 

6.3.1.1 Insights from the perturbed parameter ensemble 

Of the 10,000 parameter sets examined, 1075 are ruled out by the implausibility assessment, leaving 

8925 parameter sets as ‘not yet ruled out’ (NROY). Ruled out parameter sets overwhelmingly have 

too much burned area – just three ruled out runs have burned area less than the GFED5 record. The 

mean burned area of ruled out runs is 1305.8Mha compared to 906.1Mha for NROY runs. There are 

10 parameters with significantly different means (at p<0.0025; i.e. 0.05 with Bonferroni correction) 

between the NROY and ruled out parameter sets (Table 6.6; Figure 6.4). All significantly different 

parameter sets serve to reduce burned area; the road density threshold parameter (ρ) and fires to 

ignitions (model ontology; 𝛷) scaling parameter have the absolute largest t-values (46.92, 38.65) 

respectively. 

 

Table 6.6: Parameters with significantly different mean values between ruled out and NROY 

sets. Parameters whose t-test had p-values <0.0025 were included. The road density 

threshold parameter (ρ) has the largest t-value, where a lower value indicates an increased 

impact of road density on fire regimes.  

Variable Mean - NROY Mean – ruled out t-value 

Grass_BA (C3) 3.32 3.57 -13.18 

Grass_BA (C4) 3.29 3.64 -20.26 

TreeBL_BA  1.63 1.69 -4.36 

TreeNL_BA 1.63 1.67 -4.27 

δ2 1.03 1.09 -4.76 

𝜎1 0.029 0.033 -19.21 

𝜎2 30.43 28.56 8.33 
𝜆 7.63 8.10 -6.36 

𝛷 635.11 766.01 -38.65 
ρ 8.71 11.22 -46.91 
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Figure 6.4:  Parameters with significantly different values by tranche (Ruled out, NROY, and pareto sets). Significance was determined using 
Kruskal-Wallis tests with p<0.0025 (0.05 with a Bonferroni correction for the twenty parameters tested).
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By contrast, only the road density threshold parameter (ρ) has significantly different mean values 

between the NROY and pareto parameter spaces (Figure 6.5). Parameter values in the pareto space 

serve further to decrease burned area in comparison with NROY parameters. Therefore, we might 

conclude that vegetation fragmentation issues are the key aspect of human-fire interactions in 

driving overall fire regimes.  

However, when individual parameter correlations with overall WHAM!-GFED5 correlation are 

calculated and weighted by their respective impact on burned area, a more nuanced picture 

emerges (Figure 6.6). This calculation allowed parameters with smaller global effects on burned 

area, but still meaningful spatiotemporal effects to be identified. Weighted by impact on overall 

burned area, logging has the most impact on correlations between WHAM! and GFED5, followed by 

fire suppression and burned area per fire for Pasture and Shrub PFTs. By contrast, road density and 

the rate of unmanaged fires, which have a large impact on burned area, have correspondingly less 

weighted impact on correlations. Therefore, some aspects of the coupled model ensemble have a 

small impact on overall burned area, but nevertheless pick up meaningful aspects of the burned area 

record in GFED5; this is addressed further in the discussion.  

 

6.3.1.2 WHAM!-INFERNO evaluation: comparison with baseline models 

Measured by correlation with the GFED5 record, WHAM!-INFERNO performs significantly better 

than the baseline models (Z Tests; p < 2.2e-16). The mean correlation of the pareto parameter space 

is 0.739, compared with 0.584 & 0.572 for the baseline models (Table 6.7). Global burned area 

projected by WHAM!-INFERNO is closest to that in GFED5; consequently WHAM!-INFERNO has the 

least number of parameter sets ruled out by history matching. Notably, addition of road density as a 

representation of fragmentation to INFERNO v1.0 (INFERNO_road) does not improve model 

performance. Further, in NROY and pareto runs, the mean parameter value of the road density 

threshold is 11.5 and 10.3 in pareto and NROY runs respectively compared to 8.29 in ruled out runs. 

Reducing the impact of road density on burned area improves the performance of INFERNO_road. 
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Figure 6.5: Comparison of parameter distributions across models and parameter tranches. 

Distributions shown are for p<0.05 (Bonferroni correction applied). Road density is important 

in constraining the distribution of fire in WHAM!-INFERNO, but INFERNO’s own population-

density-based suppression function plays this role in INFERNO v1.0 and INFERNO_road.  

 
Figure 6.6: Impact of WHAM!-INFERNO model parameters on model correlation with 

GFED5 across NROY & pareto runs. Key: cor.BA – correlation (r) of parameter with global 

burned area; cor.cor – correlation of parameter values with overall model correlation; 

cor.weight – correlation of parameter values with overall correlation, weighted by parameter 

impact on burned area. The number of arson fires has little impact on global burned area – 

but nonetheless seems an important aspect of fire regimes. 
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Table 6.7: Overview of WHAM!-INFERNO performance in comparison with a re-calibrated 

version of Mangeon et al., (2016; INFERNO v1.0) and with the addition of road density to 

represent fuel-load fragmentation (INFERNO_road). WHAM!-INFERNO performs significantly 

better as measured by correlation and is closest to GFED5 burned area of 802.5Mha. 

 

6.3.2 Analysis of WHAM!-INFERNO outputs 
Across the pareto parameter runs, WHAM! burned area (mean 815Mha) is split approximately evenly 

between managed and unmanaged fires: over the historical period (1990-2014) a mean of 441.9Mha 

(54%) comes from unmanaged fires and 379.2 (46%) from managed fires (Figure 6.7). At the 

continental-scale, diverse patterns of this balance between managed and unmanaged fire emerge 

(Figure 6.8). Of the 402.1Mha mean burned area in Africa (1990-2014), 68% (275.0Mha) is from 

unmanaged fire. By contrast, fire regimes in Asia are dominated by managed anthropogenic fires, 

which comprise 100.0Mha (73%) out of 137.7Mha burned in total, whilst in South America the 

proportion is approximately equal: 75.3Mha of managed fire (52%) and 70.5Mha of unmanaged 

(48%). 

Furthermore, across the overlapping period with GFED5 (2001-2014) WHAM! burned area declines 

by 52.2Mha, with 13.4Mha of this coming from a decline in managed fire and 38.8Mha of this coming 

from unmanaged fires. Similar to the managed and unmanaged fire balance, the overall declining 

trend also has substantial continent-level heterogeneity (Figure 6.8). In Africa, from 2001-2014, 

unmanaged fire declines by 25.0Mha, whilst managed fire increases 10.8Mha. Both unmanaged (-

16.0Mha) and managed (-15.6Mha) fire decrease in South America; whilst in Asia there are small 

declines in managed (-6.6Mha) or unmanaged (-6.8Mha) fire. 

Model 
Parameter 
Tranche n 

Correlation 
(r) 

Burned area 
(Mha) 

WHAM!-INFERNO Pareto 13 0.739 812 

INFERNO v1.0 Pareto 14 0.584 750 

INFERNO_road Pareto 8 0.572 775 

WHAM!-INFERNO NROY 8912 0.721 906 

INFERNO v1.0 NROY 3239 0.560 686 

INFERNO_road NROY 3433 0.553 562 

WHAM!-INFERNO Ruled out 1075 0.725 1306 

INFERNO v1.0 Ruled out 6747 0.554 276 

INFERNO_road Ruled out 6559 0.540 274 
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Figure 6.7: WHAM!-INFERNO outputs for 1990 & 2014. Unmanaged fires are clustered towards Sub-Saharan Africa, Northern Australia and the 

Caatinga region of Brazil. By contrast, managed fires are more evenly distributed, including through India, China, Eastern Europe and Russia.
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Figure 6.8: WHAM!-INFERNO burned area for managed and unmanaged fires by continent. Both the proportion of fire between 

managed and unmanaged sources and their respective trends differ substantially across continents.
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6.3.3 WHAM!-INFERNO & GFED5 comparison 

 

6.3.3.1 Temporal comparison 

Overall, there is broad agreement between WHAM!-INFERNO and GFED5 on the decrease in global 

burned area from 2001-2014 (Figure 6.9). However, the decline in GFED5 (-192.9Mha) is more 

pronounced than WHAM!-INFERNO (-52.2Mha). Furthermore, there is broad continent-scale 

agreement in trends in South America, Europe and North America (declining). In Asia, primarily due 

to differences in cropland fires (Chapter 5), WHAM! projects a slight decline (-13.4Mha), whilst 

GFED5 shows a modest increase (12.1Mha). The greatest difference between WHAM!-INFERNO and 

GFED5, then, is in Africa, where WHAM!-INFERNO projects a modest decline (-14.2 Mha) compared 

to the pronounced trend in GFED5 (-111.8 Mha). 

The modest decline projected by WHAM!-INFERNO in Africa can be explained primarily by the static 

flammability in the continent (Table 6.8; Figure 6.10). This static flammability partially constrains the 

impact of increased road density (fragmentation) and increased fire suppression, leading to only a 

modest decrease in unmanaged fire. This contrasts with South America and Asia, in which fire 

suppression and road density are strongly negatively correlated with changes in unmanaged burned 

area. Notably, the number of unmanaged fires is strongly correlated with the unmanaged burned 

area only in South America. This fits prior understanding of anthropogenic fire use in the region, 

which emphasises the role of fire use for pasture regeneration (Brunel et al., 2021; Jakimow et al., 

2018), a form of fire use associated with large numbers of escaped fires (Chapter 5). The relationship 

between JULES-INFERNO flammability and human drivers of unmanaged fire is addressed further in 

the discussion. 
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Figure 6.9: Comparison of global burned area between GFED5 and WHAM!-INFERNO over 

the overlapping period (2001-2014). 

 

 

Table 6.8: Correlation (r) of arithmetic means of WHAM!-INFERNO unmanaged burned area 

and its drivers at continent-scale. Nfires is the sum of escaped and arson fires (i.e. 

purposefully started, yet unmanaged, fires). 

 

  

Continent Flammability Nfires Road density Suppression 

Africa 0.73 0.01 -0.05 -0.05 

Asia -0.21 0.13 -0.92 -0.90 

South America 0.56 0.67 -0.65 -0.66 
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Figure 6.10: Trends in burned area for three continents with the largest burned area. A) 

burned area comparison between WHAM!-INFERNO unmanaged fire and GFED5; B) 

drivers of unmanaged fire in WHAM!-INFERNO. Variables in B) were normalised on a 0-1 

scale. The combination of increased fire suppression and road density, alongside static 

(though volatile) flammability entails burned area in South America declines. By contrast, in 

sub-Saharan Africa changes in flammability dominate these fragmentation and suppression 

processes. As the background rate of fires was a global constant, Nfires (B) is the sum of 

arson and escaped fires.
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6.3.3.2 Spatio-temporal comparison 

Analysis of differences between WHAM!-INFERNO outputs and GFED5 shows that a range of factors 

explain patterns of divergence. A regression tree model, fit using bootstrap methods described in 

Chapter 4, shows that at their most basic level, errors seem related to lower HDI locations and cattle 

pastures (Figure 6.11). This particularly points to regions of Sub-Saharan Africa, and the issues 

highlighted above regarding drivers of unmanaged fire. 

Similarly, correlations between underlying socio-ecological variables and absolute model errors 

suggest they are focused towards less developed (HDI: r = -0.40), more flammable landscapes (PET: 

r= 0.39) with livestock grazing (pasture: r = 0.35) and the transitional anthropogenic fire regime (r = 

0.39).  

Furthermore, weighting absolute model errors by the proportion of WHAM!-INFERNO burned area 

in a pixel from managed or unmanaged fire adds clarity to these relationships (Table 6.9). As 

suggested in Chapter 5, the transitional fire regime (r = 0.43) and cropland (r = 0.39) are most 

associated with errors from managed fires. By contrast, PET is most closely associated to errors for 

unmanaged fire, pointing the obvious importance of biophysical factors in wildfire spread. However, 

cropland (r = 0.00) and the transitional fire regime (0.26) are less strongly associated with errors in 

unmanaged fires. Pastures are correlated with errors for both managed (r= 0.33) and unmanaged 

fires (r= 0.28), an issue which is explored further in the discussion.   

 

Figure 6.11: Regression tree model of absolute model errors – the difference between 

WHAM!-INFERNO and GFED5. The tree achieves r2 of 0.27 with this simple 

parameterisation, pointing to the importance of grazing lands in the world’s poorer areas to 

both model errors and global fire regimes.
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Table 6.9: Relationships of WHAM!-INFERNO forcing variables to absolute model error with 

observations. Drivers differ across unmanaged and manage fire. Potential 

evapotranspiration and planted pastures and most strongly associated with model error for 

unmanaged fires; the transitional fire regime and croplands alongside potential 

evapotranspiration are most strongly associated with errors for managed fire. 

 

Variable 
All fires 

(r) 
Unmanaged 

fires (r) 
Managed 
fires (r) 

Pre-industrial fire regime 0.18 0.18 0.10 

Transitional fire regime 0.39 0.26 0.43 

Industrial fire regime -0.11 -0.12 -0.04 

Post-industrial fire regime -0.17 -0.15 -0.13 

Potential evapotranspiration 0.39 0.36 0.29 

Net primary production 0.14 0.08 0.17 

Human Development Index -0.40 -0.37 -0.29 

GDP -0.39 -0.33 -0.34 

Population density 0.19 0.08 0.29 

Cropland 0.18 0.00 0.39 

Pasture 0.35 0.28 0.33 

Rangeland 0.05 0.08 -0.02 
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Correlations between model input variables and errors can be seen in the respective global 

distribution of burned area, and error between WHAM!-INFERNO and GFED5 (Figures 6.12 & 6.13). 

For example, burned area in WHAM!-INFERNO is consistently too high in the Caatinga region of 

Brazil – a region where JULES is known to overestimate evapotranspiration (Mathison et al., 2023). 

The errors noted in Chapter 5 associated with crop residue burning in Northern India and 

uncertainties surrounding the transitional fire regime are also evident. Overall, no single factor 

dominates the distribution of model errors and the drivers of model error differ substantially 

between fire types. Taken together, this paints a complicated picture that is explored further in the 

discussion. 

 

6.3.4 WHAM! future projections for the shared socioeconomic pathways 
Two major contrasts define managed fire projections between the SSPs. Firstly, in SSPs 1&5, crop 

residue burning, crop field preparation and pasture fires decline rapidly (Table 6.10; Figure 6.14). By 

contrast, in SSP3, these are either static (crop field preparation) or increase (crop residue burning & 

pasture management). Secondly, in SSP1, fire for hunting and gathering and pyrome management 

increase to 2050 before plateauing, but increase through to 2100 in SSP3 & 5. There is, therefore, an 

evident difference in drivers between crop residue burning, crop field preparation and pasture 

management fire, whose trajectories broadly follow the socio-economic drivers of the scenario, and 

hunter gatherer and pyrome management fire, whose trajectory is primarily determined by the 

extent of future climate change.  

Vegetation clearance fire remains a small component of overall burned area (Figure 6.14) and 

decreases in all scenarios (Table 6.10). However, perplexingly, in SSP1 there is a spike around 2080. 

This points to the rapid rates of land use change for delivery of bioenergy with carbon capture and 

storage, and the possibility of substantial ecological harm resulting from rapid implementation of 

this negative emissions technology (Heck et al., 2018; Henry et al., 2018).  

For unmanaged fires, the number of fires for arson decreases in SSPs 1&5 but remains static in SSP3. 

The background rate of fires increases in all scenarios, but most rapidly in SSP5 – this is consistent 

with that scenarios’ high rate of population growth and urbanisation (O’Neill et al., 2017; Riahi et al., 

2017): pointing to growth of wildland urban interface regions as a particular adaptation challenge in 

this scenario.  Escaped fires decrease in SSP1 in line with decreasing pasture fires and decline in SSP5 

until 2060, when rates increase again with sharp increases in hunter-gatherer and pyrome 

management fires. Finally, in SSP3, escaped fires remain static. Fire suppression increases in all 

scenarios but increases most in SSP5 and least in SSP3.  
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Figure 6.12: Difference between WHAM!-INFERNO and GFED5; for A) all fires in 2001 and 

2014 & B) mean errors (2001-2014) weighted by the proportion of WHAM!-INFERNO 

outputs belonging to managed and unmanaged fires respectively. Negative (respectively 

positive) numbers indicate WHAM!-INFERNO outputs are too low (high).  



207 
 

Figure 6.13: Comparison of WHAM!-INFERNO and GFED5 in 2001 & 2014. Overall good coherence is evident, with perhaps the biggest 
area of disagreement in Sub-Saharan Africa, where GFED5 shows comparatively homogenous burned area of ~0.4-0.8 of the land surface 
across the northern and southern savanna belts, whereas WHAM!-INFERNO has a more heterogenous pattern. 
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Figure 6.14: Anthropogenic fire from 2015-2100 across SSPs1, 3, & 5. A) gives burned 

area from managed fires, whilst B) gives the number of unmanaged fires.  

Key: CFP = crop field preparation; CRB = crop residue burning; HG = hunter gatherer; 

PM = pasture management ; Pyrome = pyrome management; VC = vegetation 

clearance.
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Table 6.10: Proportional change in WHAM! projected managed burned area, unmanaged 

anthropogenic fires and fire suppression under the Shared Socioeconomic Pathways; outputs 

are scaled to 2020 = 1.  

 

 

 SSP1 SSP3 SSP5 

Anthropogenic fire impact 2050 2080 2100 2050 2080 2100 2050 2080 2100 

Crop field preparation 0.45 0.21 0.13 0.84 0.88 0.86 0.43 0.09 0.05 

Crop residue burning 0.56 0.30 0.23 0.99 1.19 1.13 0.63 0.28 0.20 

Pasture management fire 0.56 0.23 0.12 1.17 1.20 1.29 0.69 0.22 0.13 

Hunter gatherer fire 1.74 1.56 1.37 1.22 1.92 2.00 1.76 2.19 2.79 

Pyrome management fire 1.49 1.44 1.44 1.15 1.51 1.72 1.38 2.20 3.33 

Vegetation clearance fire 0.22 0.54 0.07 0.40 0.23 0.11 0.45 0.01 0.00 

Arson fires 0.79 0.46 0.30 1.06 1.05 1.09 0.70 0.30 0.19 

Background fire rate 1.04 1.15 1.16 1.11 1.24 1.33 1.13 1.33 1.47 

Escaped fires 0.69 0.37 0.32 1.18 1.16 1.20 0.71 0.96 1.31 

Fire suppression 1.38 1.60 1.65 1.29 1.38 1.42 1.47 1.70 1.72 
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6.4 Discussion 
This Chapter has presented applications of WHAM!, a global behavioural model of human fire use 

and management. Discussion is structured in three sections. Firstly, insights derived from the 

coupling of WHAM! with INFERNO are explored. Secondly, the performance of the combined model 

is evaluated. Thirdly, discussion focuses on projections of WHAM! for the SSPs.  

  

6.4.1 WHAM!-INFERNO: Insights for global-human fire interactions 

The WHAM!-INFERNO model reveals both the extent and the diversity of the socio-ecological 

dynamics of fire regimes. In pareto model runs of WHAM!-INFERNO, managed and unmanaged fire 

contribute approximately equal amounts of global burned area. Furthermore, the spatiotemporal 

distribution of anthropogenic managed fire, and its relationship with unmanaged (‘wild’) fires differs 

substantially between continents. Whilst anthropogenic fire use, primarily for crop residue burning 

(Chapter 5), dominates the fire regime in the Asian continent, in Africa >66% of burned area is from 

unmanaged fires (Figure 6.8). Such differences should, at the very least, be a final demonstration of 

the inadequacy of model approaches seeking to represent direct anthropogenic influence on fire 

regimes as a global function of population density (Hantson et al., 2020).  

Moreover, just as the anthropogenic and biophysical influences on fire regimes differ greatly globally, 

so do apparent drivers of change, with landscape fragmentation and suppression dominant in South 

America, and biophysical changes (vegetation flammability) dominant in Sub-Saharan Africa (Table 

6.8). It should be noted, however, that the observed decline in burned area in Sub-Saharan Africa 

(Andela et al., 2017) is only partially reproduced by WHAM!-INFERNO, tempering the certainty of this 

finding (Section 6.4.2). Further, the increase in managed fire projected by WHAM!-INFERNO in Africa 

is primarily due to increased crop fires (Chapter 5), a trend not picked-up by GFED5, perhaps due to 

incomplete separation of cropland and wider vegetation fires (Hall et al., 2023). However, what is 

clear is how widespread and diverse humans’ indirect impacts on fire regimes are. This is 

demonstrated not only in the drivers of change in fire regimes within WHAM!-INFERNO, but also the 

sensitivity of model calibration to the impact of road density, and the small but discernible impact of 

logging on the flammability of tropical forests (Figure 6.6). 
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A further, an important finding relates to the role of fuel-loads in grassland, pasture and savanna 

landscapes. In both Mangeon et al., (2016) and (Burton et al., 2019) burned area per for plant 

functional types in INFERNO were the same for grasses as planted pastures, with shrubs at a lower 

burned area than grasses. However, here, the pareto parameters of WHAM!-INFERNO have lower 

burned area per fire for grass PFTs, but higher burned area for C4 pastures than the overall 

parameter space (Figure 6.4). Burned area per PFT for pastures and shrubs are both also particularly 

effective at capturing the distribution of fire regimes globally, given their smaller impact on global 

burned area than other model parameters (Figure 6.6). Therefore, together this points to the 

importance of planted pastures in fire regimes: maintaining lands suitable for livestock in regions 

with substantial net primary production creates landscapes with plentiful and flammable vegetation. 

This therefore contrasts with natural grasslands, in which lower underlying NPP may lead to fuel-

constrained fire regimes (Krawchuk et al., 2009). Conversely, increased grazing pressure has been 

highlighted as a possible explanation for the pronounced decline in burned area in Sub-Saharan 

Africa (Archibald et al., 2012; Randerson et al., 2022), further illustrating the complexity of fire-

regime dynamics in such landscapes (Section 6.4.2). 

 

6.4.2 WHAM!-INFERNO: Evaluation of model performance 
WHAM!-INFERNO has substantially improved capacity to reproduce historical global annual burned 

area over the baseline models (Table 6.7), and indeed over the online version 1.0 of INFERNO against 

GFED4 (r= 0.70; Mangeon et al., 2016). This demonstrates the importance of a process-based 

approach to understanding anthropogenic impacts on fire regimes in global modelling. Furthermore, 

the improvements made in WHAM!-INFERNO over the baseline version allow the impact of 

landscape fragmentation in global burned area to be incorporated and understood (Figure 6.4). 

However, representation of landscape fragmentation, its interaction with different ecosystem types 

and other anthropogenic pressures remains incomplete.  
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The first means through which WHAM!-INFERNO represents fragmentation is roads’ role in reducing 

fire size (Haas et al., 2021).  Although applying a road density correction to fire sizes per PFT is 

impactful, a single global function is a somewhat simplistic way of capturing such effects – and hence 

the impact on WHAM!-INFERNO burned area outputs is substantially larger than its impact on 

correlation with GFED5 (Figure 6.6). Hence, we may draw an analogy between the road density 

parameterisation here to capture fragmentation effects and representations of anthropogenic 

‘ignitions’ as a global function of population density: a first step with outstanding issues to be 

addressed. For example, one immediate improvement could be to account for the varying impacts of 

different classes of roads (e.g. following the GRIP classification; Meijer et al., 2018). 

The shortcomings of the road density parameterisation are perhaps best seen in Sub-Saharan Africa. 

Here, only a weak relationship was found between road density and declining burned area (Table 

6.8). Consequently, WHAM!-INFERNO does not fully capture the drivers of declining fire in the Sub-

Sharan Africa. This may be purely due to the global parameterisation of the function, but may also be 

due to the lack of representation of grazing pressure, and also the interaction of roads with cropland 

conversion. Understanding such issues likely requires a more targeted approach on such regions, 

perhaps building on reduced complexity approaches (e.g. Archibald et al., 2012). An alternative 

approach would be to include a direct representation of grazing pressure (see Chapter 7). The 

importance of grazing lands in sub-Saharan Africa in determining model error is highlighted by the 

regression tree of model errors, Figure 6.11 and by their relationships with error in unmanaged fires 

(Table 6.9).  

A further shortcoming in the model is the representation of previous fires on fuel load availability 

and connectivity. Such dynamics are known to be important in determining burned area in 

flammable savanna grasslands (Kuhn-Régnier et al., 2021), yet model parameterisations here do not 

contribution substantially to model performance (Figure 6.4). In part, this is a simple limitation of the 

off-line model presented here, which cannot account for such dynamics in a process-based manner. 

However, just as crucially, WHAM!-INFERNO does not account for deliberate fuel-fragmentation 

through pyrome management fire. This is illustrated best in Northern Australia, where re-

introduction of indigenous fire has led to smaller fires, and therefore reduced annual burned area 

(Bliege Bird et al., 2008). However, in WHAM!-INFERNO, increased vegetation flammability results in 

increased burned area from unmanaged fires (Figure 6.7).  
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The second fragmentation process represented in WHAM!-INFERNO is the impact of logging on the 

flammability of fire-prone tropical forests. The impact of the logging parameterisation is the inverse 

of road density: it has a small overall impact on global burned area, but is effective at increasing the 

correlation of WHAM!-INFERNO and GFED5 burned area. Representation of logging was derived from 

WHAM! outputs, hence illustrating the value of process-based representation of anthropogenic 

impacts on fire regimes, as opposed to the top-down road density parameterisation.  

Finally, an unavoidable limitation of the model is in errors in biophysical parameters passed from 

JULES-INFERNO. This can be seen clearly in the relationship of potential evapotranspiration to model 

errors for unmanaged fires (Table 6.9). Notably, JULES version 7 used for ecosystem and hydrological 

inputs to INFERNO here (Wiltshire et al., 2020) is known to overestimate evapotranspiration in the 

tropics, as well as having a particular issue of underestimating ecosystem primary production in the 

Caatinga region of Brazil (Figure 6.12; Mathison et al., 2023). Additionally, as in Mangeon et al., 

(2016; particularly their Figure 2), the Guinean Savanna fire belt extends too far north into the Sahel 

region. Fires here are overwhelmingly unmanaged – i.e. driven by biophysical factors – and so 

correcting this error would require mode fundamental changes to JULES-INFERNO’s distribution of 

plant functional types and/or vegetation flammability. The role and remit of human-Earth system 

modelling in relation to inherited model error is reflected on further in the thesis discussion.  

 

6.4.3 Possible futures of human-fire interactions 

Projections of managed fire use reiterate how its drivers differ between more biophysically driven, 

and more socio-economically driven fire uses. This illustrates how complicated interactions between 

human and natural processes will define future fire regimes. Notably, the differences in socio-

economic drivers see large differences in crop residue burning and pasture management fires 

between SSP1/5 and SSP3, whilst differing emissions pathways (RCP 2.6 in SSP1, & RCPs 7.0/8.5 in 

SSP3/5) drive different trends in pyrome management and hunter gatherer fire. 
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In some ways, explicit projection of fire use and management in the context of changing fire regimes 

highlights tensions in the SSP storylines. For example, SSP5 is defined by high challenges to climate 

mitigation (i.e. high greenhouse gas emissions), but low challenges to climate adaptation (O’Neill 

2017). Yet it seems clear in the SSP5 scenario that pyrome management fire is close to breaking point 

as a useful adaptation tool – in 2100 it accounts for the equivalent of 1/3 of all present day burned 

area (~250 Mha vs ~750Mha in the present day). At the same time, the rapid pace of urbanisation in 

SSP5, leads to large increases of the background rate of fire at the wildland urban interface – an 

environment associated with very challenging fire regime management (Beltrán-Marcos et al., 2023). 

Such fire management challenges would only increase under the extreme emissions scenario of 

RCP8.5 (Riahi et al., 2011). 

Furthermore, in SSP1, a scenario with low challenges to both climate adaptation and mitigation, 

WHAM! projects large increases in fire suppression in the sub-Saharan savanna fire belt. Not only 

would such an approach have negative impacts on biodiversity – as has been found in savannas in 

South America (Eloy et al., 2018) – but the risk of over-suppression and subsequent intense and 

damaging mega-fires is real (Cochrane and Bowman, 2021).  

Additionally, the spike in vegetation clearance fires around 2080 in SSP1 (Table 6.10) is driven by land 

use conversion for bioenergy with carbon capture and storage (or C4 perennial cropland in the LUH2 

land cover data; Hurtt et al., 2020). A negative emissions strategy that risks driving a wave of 

ecological damaging fires to clear primary vegetation is problematic at best (Merfort et al., 2023). 

However, the apparent tension between the assumptions of the C4 perennial cropland LUH2 land 

cover class (i.e. land conversion for carbon dioxide removal) and the reaction of WHAM! AFTs (who 

use fire to clear land for this purpose) may also be a function of model structure. Possible alternative 

land cover projections to LUH2, which may have allowed more internally consistent scenario 

modelling are discussed further in Section 7.3.2. 
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All of this highlights how understanding future climate change adaptation and mitigation challenges 

– particularly the delivery of land-based carbon dioxide removal – requires deeper understanding of 

the socio-ecological dynamics of land system processes. One way to advance this understanding 

would be to run the coupled WHAM!-INFERNO ensemble for future runs. This remains a medium-

term ambition. At present key outputs of INFERNO are not available for the SSPs, particularly 

vegetation flammability. This is planned to be output by the INFERNO team for the Intersectoral 

Impact Model Intercomparison Project (ISIMIP); however future runs are not scheduled to be 

completed until autumn 2024 (Chantelle Burton, personal communication).  

Nonetheless, the standalone runs of WHAM! for the SSPs demonstrate the value of socio-ecological 

modelling in identifying unforeseen interactions and feedbacks between socio-economic and 

biophysical change. Furthermore, the design of WHAM!, with a land use module and a subsequent 

AFT parameterisation, has the advantage of in principle being readily repurposable for additional 

land system processes – such as water consumption or nitrogen fertiliser application.  

 

6.5 Conclusion 
This chapter has presented application of WHAM! It has presented the coupling of WHAM! with 

JULES-INFERNO and projections of WHAM! for the shared-socioeconomic pathways. Overall, findings 

demonstrate the complexity of human-fire interactions, particularly under ongoing biophysical and 

socio-economic changes. By demonstrating the different spatiotemporal distributions of managed 

and unmanaged fires globally, we have highlighted the inadequacy of approaches assuming 

anthropogenic impacts on fire regimes can be conceptualised using globally uniform functions. This is 

reiterated in future runs of WHAM! in which a clear distinction in the drivers of cropland and pasture 

fires and wider vegetation fires is observed. 

A key area for future work identified here is landscape fragmentation, particularly in grazing lands in 

sub-Saharan Africa. The first attempt to parameterise such effects with a global function of road 

density is only partially successful and could be greatly improved by more detailed landscape-level 

work. Finally, although defining the transitional fire regime appears a crucial factor for improving 

understanding of crop residue burning (Chapter 5), its impacts on unmanaged fires are small.  
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Discussion and conclusions 
 

7.1 Introduction 
This PhD had three aims, which were presented in Chapter 2. Briefly to restate these aims, they 

were: (1) to synthesise available knowledge of human-fire interactions globally; (2) to explore how 

behavioural modelling may improve representations of anthropogenic fire impacts in global-scale 

process-based models; and (3) to quantify the influence of human behaviours on global wildfire 

regimes of the recent past and in possible future scenarios. Additionally, this thesis has been 

informed by, and contributes to, the wider development of transdisciplinary land-system modelling 

as a discipline, and in particular the application of such models to large spatial extents.  

Therefore, the body of this discussion is structured in four sections. Section 7.2 discusses the primary 

insights made regarding human influences on global fire regimes, whilst Section 7.3 places the work 

here in the context of the development of large-scale behavioural land system models. Section 7.4 

then describes some specific short and medium-term next steps for the further development and 

application of WHAM!-INFERNO. Section 7.5, which concludes this thesis, provides a final summary 

of its key findings.  

 

7.2 Socio-ecological dynamics of global fire regimes 
 

7.2.1 Advances to understanding 
WHAM!-INFERNO represents the first time that, at global scale, observations of burned area have 

been dissected into managed anthropogenic fires and unmanaged fires. Capturing this distinction has 

been noted as one of five major challenges in fire science (Shuman et al., 2022). In so doing, we have 

demonstrated that the distribution of managed fires varies substantially from unmanaged fires, and 

that across differing regions of the world, the proportion of fire regimes that is contributed from 

managed and unmanaged fires is highly heterogenous. For example, from 2001-2014, WHAM!-

INFERNO suggests 68% of burned area in Africa was from unmanaged fires, whilst in Asia as much as 

73% of burned area was from managed anthropogenic fires – particularly crop residue burning 

(Chapter 6; Figure 6.8).  

  

Chapter 7 
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This finding has several implications for current representations of anthropogenic influences on fire 

regimes in dynamic global vegetation modules. These relate to current DGVMs two primary 

deficiencies in representation of human impacts on fire regimes noted in Chapter 2 (Section 2.2.1): 

modelling of numbers of anthropogenic fires, and anthropogenic management of fire spread. 

Most fundamentally, the finding that humans’ use of fire is heterogenous between contrasting socio-

ecological contexts suggests the conceptualisation of humans’ role as globally consistent generators 

of ‘ignitions’ (Chapter 2; Figure 2.1) should now be discarded and replaced with process-based 

representations of the drivers of anthropogenic fire use. The appropriate means of achieving this are 

perhaps domain-dependent. For example, in studies focused specifically on fire, modellers should 

closely consider how to incorporate representations of the anthropogenic processes identified in 

DAFI and captured by WHAM! (Shuman et al., 2022). However, in coupled Earth-system modelling 

under prescribed socio-economic and emissions scenarios, online human feedbacks may not be 

appropriate to the underlying research focus (Gidden et al., 2019). In such contexts, a step-wise 

approach to incorporation may be a pragmatic way forward, with separable, economically-driven 

model aspects such as crop fires perhaps the first candidate for inclusion (Chapter 5; Figure 5.4).  

Just as crucial to modelling numbers of fires, are implications of WHAM!-INFERNO’s results for 

modelling fire spread. Current DGVMs assume fires will spread according to biophysical drivers alone 

(Chapter 2; Table 2.1). However, WHAM!-INFERNO demonstrates the importance of representing 

managed fires – that not only ignite, but also spread according to land user objectives (Chapter 3; 

Table 3.4 & Chapter 6; Figure 6.8).  

Furthermore, WHAM!-INFERNO corroborates empirical findings that vegetation fragmentation due 

to roads and logging have substantial impacts on unmanaged fire (Haas et al., 2021; Rosan et al., 

2022). At global scale, road density is found to have a significant role in constraining unmanaged fire 

spread (Chapter 6 Figure 6.5), whilst logging is found to have a smaller impact on burned area, but is 

effective in reproducing burned area observations in forested areas (Chapter 6; Figure 6.6). As such, 

parameterising fire spread according to biophysical equations without accounting for humans’ direct 

and indirect influences is likely to lead to a structurally biased model. Given the stark contrasts in the 

roles of managed fire (Chapter 6, Figure 6.8) and fragmentation (Chapter 6, Figure 6.10) across 

continents, a very simple first step may be to parameterise fire spread separately in each continent.  
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Therefore, innovations made through WHAM!-INFERNO should open up possibilities for substantial 

progress in global understanding of fire regimes and their possible evolution under socio-economic 

and environmental change. This is not least because, by extracting the anthropogenic signal from 

global burned area observations, we can enable improved modelling and understanding of fires’ 

biophysical drivers. Indeed, we have begun to demonstrate this potential here by isolating the 

impact of INFERNO’s flammability representation on temporal changes to burned area in sub-

Saharan Africa (Chapter 6; Figure 6.10). 

Furthermore, as a standalone model, WHAM! projections for the SSPs add specificity to differences 

in human-fire interactions between more positive and less desirable futures. For example, WHAM! 

projects the expansion of crop residue burning under SSP3, which suggests persistence and even 

growth of the associated negative impacts on air quality (Chapter 6; Figure 6.14; Raza et al., 2022). 

By contrast, in SSP1, WHAM! projects increased use of pyrome management fire across the world, 

pointing to a future in which humanity learns (or remembers how) better to live with fire as a 

natural, often beneficial, ecosystem process. Therefore, such insights can now be integrated into 

future modelling of fire regimes in DGVM.  

In the literature review, it was also noted that capturing the presence and diffusion of traditional fire 

knowledge within fire using communities was a major challenge in modelling of human-fire 

interactions (Chapter 2; Section 2.2.3). WHAM! has a simple means of capturing this, based on the 

presence of the pre-industrial anthropogenic fire regime. This influences the degree to which 

landscape fires are controlled by the people and communities using them (Chapter 5; Table 5.6).  A 

further use of the AFRs to capture landscape-level socio economic effects on fire regimes is the use 

of the industrial AFR to represent the regulatory barriers that can prevent adoption of prescribed 

fire in developed world contexts (Chapter 5; Section 5.2.3). However, further work could develop 

these empirical effects into explicit representation of policy responses to managed fires, including 

changes in suppression intensity resulting from extreme events (Chapter 2; Table 2.2).   

Finally, development and analysis of DAFI has made several notable contributions to understanding 

of global human-fire interactions. These include the qualitive definition and quantitative 

characteristics of seven central modes of anthropogenic fire use (Chapter 3; Table 3.4), and the 

spatial and subject-matter distributions of the global human-fire literature (Chapter 3; Figure 3.1).  
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7.2.2 Remaining challenges 
Work presented here demonstrates that there is sufficient data on human-fire interactions to enable 

process-based representations of human fire use and management to be integrated into DGVMs. 

However, that does not indicate data could not be improved. A particular issue identified has been in 

quantification of nomadic and semi-nomadic fire use practices such as shifting cultivation, pastoralist 

and hunter-gatherer fire (Chapter 5, Table 5.8). Studies that have linked detailed fieldwork 

documenting anthropogenic fire use and fire regime outcomes for such practices are few, and hence 

those that do exist (Johansson et al., 2017, Bird et al., 2009, Kull 2004) are invaluable for global-scale 

fire modelling.  

In principle, there is no reason field-based researchers should not link detailed qualitative work with 

quantitative fire regime analysis; this could be based through transect walks or observations with 

unmanned autonomous vehicles (i.e. drones; Ecke et al., 2022). However, in practice, there are 

multiple barriers to this. For example, the goal of researchers documenting fire use and 

management by indigenous groups (who are the primary users of nomadic fire practices) is - rightly - 

not to improve global fire modelling. Rather, such research is frequently engaged with complex 

issues around fire management, land tenure conflict and social justice in particular landscapes and 

localities (Mistry et al., 2016; Christianson et al., 2022).  

Researchers with relevant skills to engage in such critical questions may not be trained in the data 

collection or analysis skills needed to gather quantitative data on fire regimes. Therefore, the output 

of fieldwork exploring indigenous fire practices tends to be qualitative – noting types of fire use, 

their rationale and seasonal timing (Chapter 3). This is perhaps demonstrated in the central findings 

from analysis of the LIFE livelihood fire database, to which data in DAFI contributed: we may discern 

from field-based qualitative data that subsistence-oriented livelihood fire use is “declining” globally, 

but we cannot say (from the literature alone) by how much (Smith et al., incl. Perkins 2022). 

Yet, quantitative analysis of the impact of systemic changes in approach to fire management on fire 

regimes can bolster the case for indigenous fire. For example, Bird et al., (2009) show how 

reintroduction of indigenous patch-burning led to a decrease in burned area in Northern Australia, 

and not only that, but a decline in large, potentially destructive fires. Here, we have shown that this 

form of managed fire use (i.e. ‘pyrome management’; Chapter 3) poses little risk of leading to 

uncontrolled wildfires – just 0.4% of intensively controlled pyrome management fires escape 

(Chapter 5; Table 5.6). Transdisciplinary initiatives, indeed such as the Leverhulme Centre for 

Wildfires, Environment and Society, could therefore provide the basis for field-based and 

anthropologically-trained researchers also to quantify the impact of indigenous fire use on overall 

fire regime outcomes. In this PhD, the focus has been on drawing insights from field-based work into 

quantitative analysis methods: the reverse process should also be explored. 
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A particular geographic challenge highlighted in this thesis relates to southern Russia. In Chapter 2, it 

was noted that this was a particular geographic gap in the data, owing to a combination of 

difficulties using secondary data in the region, and a lack of Russian-language publications in DAFI. 

This limitation can be traced through to the outputs of WHAM-INFERNO, which substantially 

underestimate GFED5 burned area in this region (Figure 6.13). This is particularly pertinent as recent 

modelling of peat fires suggests these currently occur to the North of the large anomaly between 

WHAM-INFERNO and GFED5 (Blackford et al., 2023). Indeed, the limited available English language 

publications on human-fire interactions in the region suggest crop residue burning may play a 

substantial role in the overall fire regime (Theesfield and Jelinek 2017).  

At the outset of this PhD research, the proposed route to developing a global-scale ABM was to 

develop several meso-scale ABMs of critical landscapes for human-fire interactions (e.g., grazing 

lands in sub-Saharan Africa, peat fires in Indonesia, emerging megafires at the wildland-urban 

interface) and subsequently extrapolate these using gaussian process emulation to project outputs 

globally. A view was taken within the first year of the research to instead develop a single global 

model. The reasons for this focused on the difficulties of capturing indirect anthropogenic influences 

on fire regimes. 

Firstly, given it was not possible to systematically capture indirect anthropogenic fire impacts in 

DAFI, it was unlikely that data would have been available to enable the more detailed representation 

appropriate for meso-scale models (Johnson et al., 2023b) – for example the impacts of peat 

drainage (Page and Hooijer, 2016) or invasive pasture grasses on fire regimes (Walker and Morgan, 

2022). Furthermore, previous syntheses such as Cochrane et al. (2009) highlight the extreme 

heterogeneity of how different direct and indirect human influences on fire regimes interact in 

contrasting socio-ecological environments. Hence, it was judged that emulation from one type of 

socio-ecological fire regime to another was likely to be challenging, not least because the 

distribution of differing modes of socio-ecological fire regime was, and - notwithstanding insights 

presented here – remains, poorly understood.  
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The benefits of having adopted a single global model structure has been that it enables direct inter-

continental comparison of fire regimes and advances in broad-scale patterns of human fire use and 

management. However, it has also highlighted regions in which a meso-scale approach should be a 

high priority focus for future work. In particular, the finding that a top-down parameterisation of 

fragmentation in the WHAM!-INFERNO ensemble was not able to capture declining burned area in 

sub-Sarahan Africa suggests understanding the impact of landscape fragmentation processes in this 

region’s fire-dependent savannas should be a central research priority (Chapter 6; Figure 6.8). 

Furthermore, as vegetation flammability appears crucial to inter-annual change in burned area in 

Africa (Chapter 6; Table 6.8), this more focused work should include aspects of flammability not well 

captured by DGVMs (Harrison et al., 2022). These include vegetation fire-adaptive traits (Keeley and 

Pausas, 2022) and the impact of CO2 thickening on vegetation flammability (Bond and Midgley, 2012; 

Manea and Leishman, 2019).  

Finally, it was originally attempted to integrate WHAM! into INFERNO in a fully-coupled or ‘online’ 

structure, so that inter-temporal feedbacks could be captured and explored. However, technical 

difficulties entailed this was not possible. Specifically, the current vegetation engine within JULES – 

TRIFFID (Cox 2001) – was originally designed as an equilibrium vegetation model, to which 

representations of disturbance have only recently been added (Burton et al., 2019). Indeed, in 

Burton et al., (2019) it was found that including both land use change and fire as disturbances in 

JULES led to too much bare soil in the global land cover distribution. Inclusion of WHAM! would have 

increased levels of fire in line with improved Earth Observation data (GFED5) from levels projected 

by INFERNO (i.e. ~450Mha yr-1) to ~800Mha yr-1.  

Consequently, a preliminary assessment was conducted to understand impacts of such increased 

rates of fire on JULES’ distribution of plant functional types. This used WHAM! burned area and the 

relationship of NPP to vegetation resprouting in JULES (Harper et al., 2016) to assess probable 

impacts on model behaviour.  The preliminary assessment indicated including WHAM! in an online 

coupling with JULES would lead to widespread desertification of the modelled world. As TRIFFID is 

currently being redeveloped (Chantelle Burton, personal communication), a practical decision was 

taken to attempt online coupling after this has been completed. However, with fine-scale remote 

sensing data indicating much greater global burned area than previously thought (Chen et al., 2023), 

re-calibration of JULES to account for this evidence of increased real-world rates of disturbance 

should be a research priority.  
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7.3 Modelling of human-Earth system interactions 
 

7.3.1 Advances in understanding and model capacity 
Advances to the development human-Earth system modelling are presented in two sections. The 

first section presents insights from WHAM! standalone runs for the SSPs, arguing that they 

demonstrate the value of modelling approaches that capture the inter-relationships of ecological 

and socio-economic processes. Secondly, the major technical advances in WHAM! that could have 

wider applications in human-Earth system modelling are summarised. 

 

7.3.1.1 Advances in understanding 

The value of adopting a transdisciplinary, socio-ecological approach to modelling of land system 

sustainability challenges is demonstrated in the standalone runs of WHAM! for the SSPs. WHAM! 

can identify emergent sustainability challenges implied by more positive future scenarios, and 

particularly by the economic development assumed in SSPs 1 & 5. For example, in SSP5, whose 

narrative definition assumes low climate adaptation challenges (O’Neill et al., 2017), rapid 

urbanisation leads to expansion of uncontrolled fires in wildland urban interface areas (Chapter 6; 

Figure 6.14b). This, combined with extreme levels of climate change points to, at best, highly 

challenging adaptation conditions. Furthermore, whilst the underlying SSP narrative perhaps 

assumes that technological progress will allow such issues to be overcome, it is unclear whether any 

level of intensive fire suppression would allow resulting societal harms to be addressed  (Hoffman et 

al., 2022). Indeed, intensive fire suppression can lead to the ‘fire paradox’ – fuel build-up due to fire 

exclusion that ultimately leads to increased fire (Calkin et al., 2015; Hayes, 2021; Wunder et al., 

2021) – and so may do more harm than good as an adaptation measure (Fernandes et al., 2020). 

Furthermore, even in SSP1, WHAM! identifies significant emergent climate mitigation and 

adaptation questions. LUH2 land cover projections for the SSPs are driven by integrated assessment 

model outputs (Hurtt et al., 2020); one controversial aspect of such models is their projection of 

large-scale bioenergy as a means of removing Carbon dioxide from the atmosphere (Low and 

Schäfer, 2020). As such, in the LUH2 projections for SSP1 there is significant land conversion for 

planting of bioenergy feedstocks (“perennial C4 cropland” in the LUH2 data). Consequently, WHAM! 

projects a spike in deforestation fires around 2080 as land is cleared for bioenergy crops (Chapter 6; 

Table 6.10). This finding highlights the potential pitfalls of considering climate change mitigation 

strategies in the absence of holistic understanding of socio-ecological land system processes (Heck et 

al., 2018). 
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7.3.1.2 Advances in model capacity 

Scaling-up of agent-based land use models to run at large spatial extents was a major technical 

challenge at the start of this PhD, and remains so at its end (Dressler et al., 2022). However, the 

work described in this thesis has contributed towards developing such modelling capacity. Indeed, as 

far as I am aware, WHAM! is the first agent-based model representing anthropogenic land use 

decision-making to run at global-scale.  

Perhaps the most fundamental advance from a technical perspective was in finding a simple 

empirical means of representing competition between agent functional types (AFTs). As first 

proposed by Arneth et al., (2014), AFTs should compete for land in a similar way to plant functional 

types (PFTs). The competitiveness of different AFTs is specified within capital spaces – be they social, 

technological, economic or environmental – just as PFTs compete based on availability of biophysical 

resources such as sunlight or water. This essentially theoretical proposition is mirrored in the 

CRAFTY model, in which AFTs compete for land based on the outcome of a Cobb-Douglas objective 

function based on unitless capital spaces (Murray-Rust et al., 2014). 

Rather than such a theoretical approach, WHAM! uses empirically-defined tree models specifying 

each AFT’s preferred capital niche. This not only works effectively at reproducing observed patterns 

of land use occupancy, but also has several benefits for model behaviours. For example, as tree 

outputs for a given land system need not sum to unity in a given pixel, this can be used to capture 

how competitive the contest for land is. This property was used in WHAM! to capture the stocking 

density of rangelands, and particularly for where stocking rates were projected to be low (Chapter 5; 

Section 5.2.2.3). Given the diversity of land cover types described by ‘rangelands’ - from high 

productivity tropical savannas to arid grasslands – such land cover types can have greatly divergent 

rates of grazing intensity (Goldewijk et al., 2017). Capturing this dynamic was valuable in projecting 

the global distribution of pasture management fires (Chapter 6; Table 6.7 & Figure 6.7). Therefore, 

the capacity to represent a lack of competition for land in WHAM!’s land use module is an example 

of the flexibility of the simple underlying approach. 
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The use of meta-analysis to inform representation of land management decisions was identified by 

Magliocca et al., (2015b) as an important avenue for advancing land use modelling - hence, the 

empirical parameterisation of WHAM! is not strictly novel in a technical sense. However, it does 

demonstrate proof of concept for this approach in developing global-scale ABMs. Furthermore, 

WHAM! combines empirical parameterisation of AFTs’ fire use and management actions with the 

theoretically-specified anthropogenic fire regimes as the basis of landscape-level meta effects. 

Processes represented in this way include presence of traditional fire knowledge, suppression-

oriented fire policies, and arson due to land tenure conflict.  

WHAM! therefore takes an intermediate course between the theoretical approach of CRAFTY 

(Murray-Rust et al., 2014) and the empirical approach taken by models such as CLUE (Verburg and 

Overmars, 2009) by empirically parameterising a theoretical conceptualisation of ‘land fire systems’. 

As such, by focusing on one aspect of the land system (fire), WHAM! can draw on the most 

appropriate modelling strategies to capture the specific dynamics of this target process. Of course, a 

downside to this specificity is that models such as CRAFTY and CLUE may be applied to a wide array 

of land system questions (e.g. Das et al., 2020; Mamanis et al., 2021; Yin et al., 2022) whereas 

WHAM! cannot. Yet, repurposing of WHAM! to focus on, for example, water consumption, would be 

readily achievable subject to sufficient field-based data being available on water management 

practices amongst land users to parameterise relevant AFTs (Kaiser et al., 2020). However, applying 

WHAM! simultaneously to several land system processes would likely require more fundamental 

model redesign.   

 

7.3.2 Remaining challenges 
Attempts to capture human-Earth system feedbacks through process-based biophysical and ABM 

coupling are in their infancy (Calvin and Bond-Lamberty, 2018). Furthermore, much of the impetus 

for integrating agent-based models with process-based biophysical models has come from within the 

interdisciplinary land use science community itself (e.g. Robinson et al., 2018). Consequently, whilst 

literature on possible ABM approaches to scaling-up was available at the commencement of this PhD 

project (e.g. Arneth et al., 2014), no such assessment had been made of the strengths and 

weaknesses of differing DGVM approaches for capturing human-Earth system feedbacks. Here, 

therefore, a brief assessment is made of lessons learned through working with JULES-INFERNO in a 

socio-ecological systems modelling context. Discussion focuses first on how the structure of 

INFERNO shaped the present research, and then secondly on the broader modelling protocols and 

associated common forcing datasets currently used by DGVM and ESM communities.  
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INFERNO is a model of intermediate complexity (Mangeon et al., 2016). Amongst models in the 

FIREMIP ensemble, INFERNO is a simpler, more empirical model than SPITFIRE or the Community 

Land Model’s fire module (Rabin et al., 2017). For example, SPITFIRE explicitly represents fire spread 

between model timesteps using the Rothermel physical fire spread equations (Thonicke et al., 2001). 

However, as INFERNO empirically calculates the burned area of individual fires (using a single burned 

area per PFT per fire - Chapter 6; equation 6.10), it is not as simple as the purely empirical approach 

of SIMFIRE, which calculates burned area per pixel directly through a regression approach (Knorr et 

al., 2014). INFERNO’s intermediate-complexity approach was what dictated the ultimate structure of 

WHAM!-INFERNO. For example, integrating with SIMFIRE would have resulted in WHAM! outputs 

becoming additional independent variables in SIMFIRE’s underlying regression model. Conversely, a 

fully physically-based model such as SPITFIRE would have entailed running few iterations of a more 

complicated and computationally hungry coupled model. 

As such, INFERNO’s structure supported the exploration of a large parameter space - 10k runs of a 

perturbed parameter ensemble - with sufficient biophysical process-representation to allow 

interactions of anthropogenic and biophysical factors to be modelled explicitly. Importantly, 

INFERNO models vegetation flammability using physically-grounded equations, which incorporate 

the respective roles of leaf Carbon and soil Carbon pools, vapour pressure, precipitation, and soil 

moisture (Mangeon et al., 2016). This enables INFERNO to calculate burned area from numbers of 

unmanaged fires projected by WHAM!.  Therefore, the ability to explore the interactions of 

anthropogenic and biophysical drivers of fire regimes across diverse parameter spaces was enabled 

by INFERNO’s simple, but not simplistic, approach. 

The primary limitation of using INFERNO compared to a more complex process-based model such as 

SPITFIRE relates to the exploration of feedbacks. As noted above, exploring the ‘fire paradox’ 

requires representation of fire suppression and vegetation fuel build-up. WHAM! provides a process-

based representation of fire suppression, grounded in both theory and empiricism. However, 

although INFERNO’s calculation of vegetation flammability incorporates soil and vegetation Carbon 

pools, these effects saturate at 0.2 kgC m-2 (Mangeon et al., 2016), which corresponds to the point at 

which a cell is covered by tree plant functional types (Clark et al., 2011). Hence, intensive fire 

suppression would have no impact on INFERNO’s projection of vegetation flammability beyond this 

threshold. Indeed, representation of the impact of antecedent fires (or lack thereof) is an identified 

challenge in INFERNO, even within frequently burning grassland ecosystems (Kuhn-Régnier et al., 

2021). Hence, there is a trade-off between the free exploration of parameter spaces possible in 

WHAM-INFERNO and capacity to capture more complex feedbacks.  
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A further outcome of this PhD has been to highlight the importance of understanding land use 

transitions for both anthropogenic fire use and human-Earth system relations more broadly. WHAM! 

performs best for crop residue fires in pre-industrial (e.g. swidden) or industrial (intensive 

monoculture) agricultural systems but less well in mixed or transitional land system states (Chapter 

5; Table 5.10). This can be traced back to underlying uncertainties in the distribution of 

anthropogenic fire regimes in Chapter 4, where the transitional anthropogenic fire regime was the 

focus of disagreement between WHAM’s land use engine and land use intensity measured by the 

Human Appropriation of Net Primary Production (HANPP; Figure 4.10).  

This finding has substantial implications for parameterisations of land user behaviours in large-scale 

models. Notably, understanding differing land use intensification pathways and their relationship to 

specific land user actions is vital. For example, in spite of rapid agriculture expansion and 

intensification (Marin et al., 2022). South America has not experienced problems with crop residue 

burning on the same scale as India and China (Hall et al., 2023). In WHAM!, this pattern is captured 

through population density: because population density is lower in South America, croplands move 

more rapidly through to the industrial AFR, whilst the inverse is true in India and China. Implicitly, 

therefore, at a process-level WHAM! suggests that higher (lower) population density is associated 

with small (larger) farms. On the one hand, larger farms may be better able to mechanise production 

and so cease fire use (Cammelli et al., 2020), whilst at the same time smaller farms - particularly in 

the developing world - tend to participate in informal supply chains, which are more challenging to 

regulate (Birthal et al., 2017; Bhuvaneshwari et al., 2019).  

However, an alternative explanation of the divergence between South America and Asia in patterns 

of crop residue burning could be the larger volume of residues produced by rice versus soybeans 

(Yang et al., 2008). Pertinently, one area where reside burning has become an environmental and air 

quality issue in South America centres around the sugarcane ethanol industry in the Sao Paulo 

region of Brazil (Pestana et al., 2017), which is therefore an outlier given the dominance of soybean 

production in the Brazilian agricultural heartlands (Song et al., 2021). 

The first land use model intercomparison project found that current land use models struggle even 

to produce spatial patterns of land cover change (Alexander et al., 2017). Furthermore, the currently 

dominant optimisation-based approaches to land use modelling systematically over-predict rates of 

land use change (Turner et al., 2018). Therefore, incorporating the kind of detailed process-based 

understanding required to capture the heterogeneity of real-world land use transitions and their 

relationships to specific land user actions and management strategies remain a major research 

challenge (Verburg et al., 2019).  
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At the project outset, a pragmatic choice was made to adopt the land cover data used by DGVM and 

ESM communities in both FIREMIP and CMIP6 (i.e. LUH2; Chapter 4). This enabled direct comparison 

of model outputs with those from FIREMIP, as well as allowing ready integration with JULES outputs 

– which assume anthropogenic land covers occupy the pixel fractions suggested by the LUH2 (Hurtt 

et al., 2022; Wiltshire et al., 2020).  

This thesis has noted several limitations of WHAM!’s representation of land system dynamics that 

resulted from the choice of land cover data. These include the handling of the ‘rangeland’ land cover 

class in LUH2, which covers grazing lands in semi-natural grasslands across a diverse climatic 

gradient (Klein Goldewijk et al., 2017, Section 4.2.4.3). Implementing representation of pasture 

management fire in rangelands required a top-down correction in WHAM! (5.2.2.3). Furthermore, 

representation of cropland abandonment, which can have a substantial impact on fire regimes 

(Chapter 3; Figure 3.9), was restricted by use of LUH2, where such effects are already implicitly 

represented in the data. Similarly, it was originally intended to adopt AFTs for mixed smallholders 

(cropping and livestock farming; de Haan et al., 2010; Table 3.1). However, LUH2 disaggregates 

mixed or mosaic land cover classes into fractions of cropland and pasture (Klein Goldewijk et al., 

2017), and hence mixed AFT types were not used in the final model. 

Capturing the complexity of land use dynamics, and particularly anthropogenic land management, in 

globally harmonised datasets is an active area of research, and hence several alternatives to LUH2 

could have been adopted (Table 7.1). Broadly, these can be categorised into land cover data sets 

based on Earth observation, and those that seek to integrate such satellite-derived data with 

government and other land management data. In this latter category, the HILDA+ data of Winkler et 

al., (2021) is a recent and high-resolution data set that integrates fine-scale remote sensing (e.g. 

Sentinel-3 at 300m2 resolution) with FAO land use data.  

HILDA+ demonstrates that global rates of land use change are around four-times greater than 

suggested by coarser-resolution data sets such as LUH2 (Winkler et al., 2021). Adopting HILDA+ data 

could have been particularly beneficial for representation of grazing lands: LUH2 suggests that the 

annual mean change in pasture & rangeland is just 5.7Mha, compared with 42Mha in HILDA+. This 

points to underlying issues in the distribution of grazing lands in LUH2, which have been identified in 

numerous regional studies (see Qiu et al., 2023 for a brief review), with particular issues noted in 

Brazil (Chini et al., 2021). Similarly, adopting the widely-used MODIS-based land cover data product 

(Friedl et al. 2010) would have had the benefit of the ‘cropland-mosaic’ land cover class, which could 

have constrained the distribution of shifting cultivation. LUH2 distributes shifting cultivation based 

on the expert elicitation and visual inspection of Heinimann et al., (2017), which results in coarse 

categorisation of its presence as “very-low”, “low”, “moderate” or “high” (Hurtt et al., 2020). 
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A further alternative to MODIS-based land cover or the HILDA+ reconstruction would be to use 

model outputs. The principal advantage of this for historical runs would be to include additional 

information on land use intensity (e.g. Nitrogen fertiliser application, irrigation). These data could 

have been used to constrain land use transitions in WHAM!, for example the drivers of crop residue 

burning under land use intensification (Sections 4.2.4.2 & 5.3.3.2). However, current land use 

models have substantial challenges in reproducing observed rates of land use change (Turner et al., 

2018), with model structure (ABM, partial general equilibrium) being more predictive of modelled 

rates of change than differences in socio-economic scenarios (Alexander et al., 2017; Brown et al., 

2020). Hence, use of modelled land use may be most suitable for future model runs, potentially 

mitigating observed scenario (in)coherence in WHAM! SSP runs with LUH2 (Section 6.3.4).  

 
Table 7.1: Overview of some key possible alternatives to LUH2 data as land cover inputs to 
a global-scale model. LUH2 fulfils a critical need of Earth system modelling – integrating 
future runs with paleo-reconstructions of the Holocene – but this may be at the expense of 
specificity in reconstructions of the recent past. 
 

Dataset Type Temporal 

range 

Spatial 

resolution 

Notes 

LUH2 Harmonised long-

term reconstruction 

& future projection 

10,000 

BCE-2100 

0.25º Current standard input for global model 

intercomparison protocols; known 

issues with distribution of grazing lands 

ESA-CCI Earth observation 

(land cover) 

1992-2020 300m2 Includes land use mosaic classes that 

could support mixed smallholder types 

MODIS Earth observation 

(land cover) 

1997-2020 500m2 Includes a cropland mosaic that could 

be used to capture shifting cultivation 

HILDA+ Land use 

reconstruction 

1960-2018 1km2 Detailed treatment of land use 

transitions delineates between 

deforestation and short-term 

disturbances (e.g. shifting cultivation) 

PLUM Land use model 

(future projections) 

1990-2100 0.5º Spatially-explicit land use and land 

cover projections; currently integrated 

with LPJ-GUESS model for crop yields 

Citations: LUH2 (Hurt et al., 2022); ESA-CCI (Li et al., 2018); MODIS (Field et al., 2010); HILDA+ (Winkler et al., 

2021); PLUM (Alexander et al., 2018); LPJ-GUESS (Lindeskog et al., 2013). 
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7.4 Future Work 
 

In the previous sections of this Chapter some limitations to the work presented have been identified. 

These are principally: improving quantification of indigenous (nomadic and semi-nomadic) fire use; 

improving understanding of the drivers of crop residue burning in India and China and their 

relationship to land use intensification; improving understanding of the drivers of landscape 

fragmentation in sub-Saharan Africa and its relationship to declining burned area; and online 

coupling of WHAM!-INFERNO. Addressing each of these limitations will require substantive research 

efforts beyond the scope of this PhD. This section, therefore, focuses on opportunities for shorter-

term development and application of WHAM!-INFERNO.  

 

7.4.1 Development of WHAM!-INFERNO 
 

7.4.1.1 Seasonality of anthropogenic fire 

Data on the seasonality of anthropogenic fire use were recorded in DAFI as the first and last month a 

given practice was used or not used in each case study (Chapter 3; Section 3.2.2.2). Using kriging, an 

attempt was made to interpolate these data points to the global JULES-INFERNO model grid for each 

of the seven central modes of anthropogenic fire use identified through analysis of DAFI. The output 

of this was 12 boolean maps (one for each calendar month) for each of the seven modes of fire use, 

denoting whether a fire use type should be present in a given pixel. These 12 maps were summed by 

pixel and divided by the total, resulting in maps giving the proportion of a given fire use that should 

occur in each month. Where the sum of the Boolean maps was zero, a uniform distribution was 

assumed (
1

12 
 in each month).  
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However, these maps had multiple issues (Figure 7.1). The patchiness and spatially-skewed data 

available led to identification of implausible patterns of seasonality. Smoothing of the original 

extrapolations led to more coherent maps, but did not capture some of the underlying patterns. 

Therefore, WHAM! was run at an annual timestep for coupled results presented here. It should be 

noted that removing the seasonality of anthropogenic fire use in WHAM! had only a very limited 

impact on outputs of WHAM!-INFERNO. As managed fire burned area was calculated at an annual 

timestep within WHAM! this was not impacted. Furthermore, of the three sources of unmanaged 

anthropogenic fires in WHAM!-INFERNO, only escaped managed fires were impacted. This was 

because the background rate was uniform, and as no reliable seasonality data were available for 

arson, a global uniform distribution was already assumed. To sense check the possible influence of 

seasonality of escaped fires on burned area, model outputs were re-run using the seasonality maps 

described above. Model performance was essentially unchanged: the correlation across the pareto 

parameter space of 10k model runs was 0.734. 

A possible improved means of representing anthropogenic fire seasonality is detailed in Smith et al.., 

(including Perkins; in review) in which calendar months of burning were related to the underlying 

drivers of the seasonal cycle (potential evapotranspiration, precipitation and their combination). This 

produces more credible outputs. However, this analysis only focuses on livelihood fire by small-

holder and indigenous fire uses and so does not include many fire use cases represented in WHAM! 

Furthermore, timing of fire use depends not only on seasonal cycle, but also multiple socio-economic 

factors. For example, the presence (or absence) of community fire governance can determine 

whether fire is set at the start of the dry season (when fire use is typically controlled) or later in the 

dry season (when fire use is much harder to control; Laris 2002; Butz 2009). Capturing the global 

seasonality of anthropogenic fire in a systematic way therefore remains a challenge in fire modelling. 
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Figure 7.1: Example of the attempt to include fire seasonality in WHAM. Maps describe 

proportion of pyrome management fire in a pixel that occurred during the month of July, a) 

before a smoothing window was applied, and b) after smoothing; c) gives the seasonality of 

burned area from managed fire in comparison to GFED5. This approach to seasonality was 

discarded from WHAM! as it did not add meaningful representation of process or serve to 

improve model performance. 
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.7.4.1.2 WHAM!-EO 

It is clear from outputs in Mangeon et al., (2016) and unmanaged fire in the WHAM!-INFERNO 

ensemble presented in Chapter 6 that INFERNO contains some structural biases. For example, fire 

extends too far north at the Southern edge of the Sahara Desert, and the Caatinga dry forest region 

of Brazil is instead a savanna and hence too flammable (Chapter 6; Figure 6.7). These two biases 

relate to known underlying issues in JULES’ hydrological and vegetation growth parameterisations 

(Wiltshire et al., 2020). Hence, to understand how much these might constrain the capacity of 

WHAM!-INFERNO to reproduce and understand observed patterns of fire, an additional version of 

WHAM! could be constructed, in which inputs from JULES would be replaced with remote sensing 

observations. This additional parameterisation of WHAM! could also serve to facilitate coupling of 

WHAM! to additional DGVMs and potentially generic inputs to CMIP7 (see Section 7.4.2.1). 

 

7.4.1.3 Grazing intensity 

Attempts were made in WHAM! to capture the effects of livestock grazing intensity on unmanaged 

fire spread both in semi-natural grasslands (‘rangelands’) and planted pastures. The representation 

of grazing sparsity in WHAM!, for example, was trialled (Chapter 5; Section 5.2.2.3). However, this 

constraint was designed to limit managed fire use in low NPP rangelands, whilst the major unknown 

impact of livestock grazing is in dense or ‘overgrazing’ fragmenting fuel loads in fire-prone, higher 

NPP, savannas (Hempson et al., 2017; Zubkova et al., 2019). As such, use of this constraint was not 

fully coherent from a perspective, and also did not seem to improve model performance. Another 

option explored was to use the grazing intensity output of the Parsimonious Land Use Model (PLUM; 

(Alexander et al., 2018). This worked well in initial trials for model years 2012-2014, and this 

parameterisation could now be expanded to the full WHAM!-INFERNO historical period (1990-2014) 

pending updated historical runs of PLUM (Peter Alexander, personal communication).  
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7.4.2 Further applications of WHAM!-INFERNO 
 

7.4.2.1 Crop fire emissions 

Alongside burned area, the GFED5 cropland product of Hall et al., (2023), includes a new set of 

emissions factors for cropland fires derived from a literature metanalysis. As such, it should be 

possible now to use WHAM! to project cropland emissions across the SSPs. This output should then 

be able to form the basis of a prescribed input to Earth System Models in the next coupled model 

intercomparison project (CMIP7). In CMIP6, cropland burning emissions were derived from non-

spatial IAMs without explicit representation of the processes driving crop fires. As such, a global 

WHAM! projection would represent an important improvement.  

 

7.4.2.2 Narrative interpretation of WHAM! SSPs 

The outputs of WHAM! for the SSPs paint contrasting pictures of anthropogenic fire use and 

management. In particular, the difference in pasture and crop residue burning between SSPs 1&5 

versus SSP3 is stark (Chapter 6; Figure 6.14a) and is of a scale that needs to be considered alongside 

global environmental change when exploring future fire regimes. Of course, WHAM! is just one 

model, and its outputs contain some errors that are specific to JULES (Section 7.4.1.2). As such, one 

method to increase the applicability of broad findings from WHAM! future runs could be to create 

narrative interpretations of its outputs for the SSPs.  

Narrative interpretations of ABMs have been previously suggested as ways both to increase the 

generalisability of ABM findings (Perry and O’Sullivan 2017), but also to sense-check model 

representations of human behaviours (Millington and Wainwright 2016). One way to develop SSP 

narratives for human-fire use and management, would be to convene a group of researchers and 

practitioners to interpret the broad kinds of pyro-futures described by WHAM! outputs.  
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7.4.2.3 SSP runs of WHAM!-INFERNO offline coupling 

Running the offline WHAM!-INFERNO ensemble for the SSPs is a realistic medium-term goal. At 

present, this goal is constrained only by practical considerations. Firstly, flammability, which is a key 

input into the offline coupling is not routinely output during JULES-INFERNO runs. Hence, 

flammability is not available for the CMIP6 runs from which other JULES inputs to WHAM! were 

sourced. The INFERNO core team plan to output flammability for the SSP runs as a part of the inter-

sectoral model intercomparison project (ISIMIP), but this not scheduled until autumn 2024 (Chantelle 

Burton, personal communication).  

 

7.4.2.4 Towards anthropogenic pyromes 

Several authors have made attempts to categorise global fire regimes, including their anthropogenic 

components (Chapter 2). However, as top-down approaches, these rely on categorisation 

quantitative measures of the fire regime (fire size, timing, burned area), rather than on the processes 

that drive them (Chapter 2). As WHAM!-INFERNO now provides a breakdown of burned area, but 

also its socio-ecological drivers, there is potential to use these outputs to define ‘anthropogenic 

pyromes’. The primary route to achieving this would be by combining WHAM! outputs, remote 

sensing observations, and indicators of human land use intensity, such as the Human Appropriation 

of Net Primary Production (Haberl et al., 2007; Chapter 4).  

 

7.4.2.5 Beyond GDP: human capitals under the SSPs 

Running WHAM! for the SPPs required new spatial projections of the Human Development Index and 

the market access metric of Verburg et al., (2011). Beyond their immediate application, these 

projections contribute to the removal of a barrier towards global application of behavioural land use 

modelling – the absence of appropriate datasets from which to define AFT capital spaces (Perkins et 

al., 2022; Chapter 4). Hence, in partnership with other land system modelling groups working on 

projections of further indicators, we plan to create a suite of human indicators for spatial modelling 

of human-Earth system interactions.  
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7.5 Conclusion 
Capturing the distinction between managed and unmanaged fires in fire models has been highlighted 

as a major challenge in fire science (Teckentrup et al., 2019; Ford et al., 2021; UNEP 2022), and 

perhaps even a requirement to ‘repurpose fire science for the Anthropocene’ (Shuman et al., 2022). 

This PhD thesis represents a large step towards achieving this research goal.  

Analysis of DAFI, the database of anthropogenic fire impacts, identifies seven central modes of 

anthropogenic fire use, their respective spatial distributions and quantitative fire regime 

characteristics (Chapter 3). WHAM!, the wildfire human agency model, projects these seven modes 

of fire globally. WHAM! outputs for crop residue fires show good coherence with the GFED5 crop 

fires product, the first time a global spatial model of this process and a global Earth observation 

product of crop fires have been compared (Chapter 5). Furthermore, wider WHAM! outputs, 

including for managed vegetation fires, unmanaged fires and fire suppression serve significantly to 

improve the capacity of INFERNO to reproduce observed burned area in GDED5 (Chapter 6).  

More broadly, work here demonstrates the importance of coupled socio-ecological modelling for 

understanding present-day environmental processes and sustainability questions. For example, 

errors in distribution of WHAM! crop residue fires are closely related to the challenge of modelling 

land use transitions (Chapter 4). Moreover, running WHAM! for the SSPs identifies emergent climate 

adaptation and mitigation challenges under contrasting futures (Chapter 6). For example, WHAM! 

runs for SSP1 point to the potential environmental damage from rapid land use conversion for 

biofuel crops; whilst SSP5 runs suggest extreme adaptation challenges due to rapid climate warming 

and growth of the wildland urban interface.  

Future research priorities highlighted by this thesis (this Chapter) include improving field-based 

quantification of anthropogenic fire uses, particularly nomadic and indigenous fire; and the need for 

meso-scale modelling of the interactions between direct and indirect anthropogenic influences on 

fire regimes, particularly in the savannas of sub-Saharan Africa.  

Overall, this thesis provides valuable advances in understanding for global fire science and modelling 

of human-Earth system interactions. 
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Appendices 
Appendix 3A: Foundational reviews & meta-analyses used to structure DAFI literature search  

These papers were used to begin the snowball search for literature in each preliminary AFT category; papers were focused on fire 

management where possible, or otherwise search began from the land use (LULC) literature  

Category Source Type Focus Comments 

Shifting cultivation 

Van Vliet et al., 2012; 
 
Mertz et al., 2009 

Systematic review (global); 
 
Systematic review (SE Asia) 

LULC; 
 
LULC 

Van Vliet was global, Mert focused on South 
East Asia; search terms from Van Vliet used 
to identify more recent papers 

Migratory pastoralism 

Nori and Scoones 2019;  
 
Liechti & Biber 2016 

Global review & research agenda 
 
Regional review (Europe) 

LULC; 
 
LULC 

Both studies primarily used to define search 
terms to identify sources; references in Liechti 
identified as candidates for inclusion 

Hunter gatherer 

Laris 2002; 
 
Fowler & Welch 2018 

Foundational paper; 
 
Comprehensive global overview 

Fire;  
 
Fire 

Papers citing / cited by sources were 
beginning of snowball sample 

Monoculture 
cropping: residue 
burning Kumar et al., 2015 

Primary research and comprehensive 
regional literature review Fire 

Used to directly identify papers and define 
search terms 

Extensive livestock 
farming 

Briske 2017;  
 
Asner 2004 

Robust introductory text; 
 
Literature review 

LULC; 
 
LULC 

Both texts used to define search terms; 
references in Briske and papers citing Asner 
used to begin snowball 

Small-scale forestry 

Cochrane 2009a; 
 
Nepstad et al., 1999 

Comprehensive pan-Tropical literature 
review  
 
Foundational paper 

Fire; 
 
LULC 

For both papers, citations and papers citing 
used to begin snowball  
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Category Source Type Focus Comments 

Monoculture 
cropping: 
deforestation Cochrane 2009a; 

Comprehensive pan-Tropical literature 
review  

 
 
Fire 

Citations and papers citing used to begin 
snowball  

Livestock farming: 
deforestation Cochrane 2009a; 

Comprehensive pan-Tropical literature 
review  

 
 
Fire 

Citations and papers citing used to begin 
snowball  

Industrial forestry 

Blanco et al., 2015; 
 
Kalies & Kent 2016 

Systematic review;  
 
Systematic review 

LULC; 
 
Fire 

Citations and papers citing used to begin 
snowball  

Agricultural 
abandonment Seijo & Gray 2012 Literature review  Fire 

Citations and papers citing used to begin 
snowball  

Biodiversity 
conservation 

Govender et al., 2006; 
 
Fernandes et al., 2016 

Foundational paper; 
 
 
Quantitative review / field manual 

Fire; 
 
 
Fire 

Citations and papers citing used to begin 
snowball 
 
Data directly included; citations used for 
snowball 

Wildland urban 
interface NA NA NA 

"Wildland urban interface AND fire" was 
searched directly to identify papers 
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Appendix 3B: Suggested systematic search terms for a meta-analysis of global anthropogenic fire use 

Whilst all search terms are assigned to one land use / fire development stage category, several such as residue burning, and biodiversity 

conservation are applicable across divisions.  

 

Anthropogenic fire 
regime Forests & forestry Pasture & grassland Cropland & secondary vegetation 

Pre-industrial 

Traditional fire knowledge; 
traditional fire use; traditional 
ecological knowledge AND fire; 
Indigenous fire use; Aboriginal 
burning; Aboriginal fire use; 
hunting AND fire; patch mosaic 
burning; 

Migratory pastoralism AND fire; 
pastoralist AND fire; transhumant 
herder AND fire; nomadic herder 
AND fire 

Shifting cultivation AND fire; 
swidden; “slash and burn” AND fire; 
Citamene AND fire; “slash and 
mulch” 

Transitional 

Charcoal making; charcoal 
production; fire use timber 
harvesting; logging fires; fire illegal 
forestry; fire tropical timber 
extraction 
 
Fire-free agroforestry; agroforestry 
fire use 

Rangeland burning; rangeland 
AND prescribed fire; pasture 
burning; pasture renewal fire; 
pasture fire; escaped pasture fire; 
rangeland management fire; 
pasture AND deforestation 

Straw use AND fire; straw 
management AND fire; crop residue 
disposal AND fire; agricultural fires, 
field burning, agricultural burning, 
stubble burning; crop residue 
burning; haze AND agricultural fire; 
air quality AND agricultural fire; air 
pollution AND agricultural fire; veld 
fire; sugar cane burning; pre-
harvest sugar cane burning; rice 
straw burning  
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Anthropogenic fire 
regime Forests & forestry Pasture & grassland Cropland & secondary vegetation 

Industrial 

Forest management AND fire; 
salvage logging fire; prescribed 
burning AND forestry; fuel load 
management; fuel load 
management AND fire; forest fuel 
load management; stand thinning 
AND forestry 

Woody encroachment AND fire; 
rangeland AND fire reintroduction; 
livestock AND fire management; 
patch-burning AND livestock 

Deforestation AND fire; 
deforestation AND wildfire; land 
clearance AND fire; agricultural land 
clearance AND fire; fire use 
deforestation 

Post-industrial 

Wildland urban interface; wildland 
urban interface AND fire; wildland 
urban interface AND fire 
management; fire paradox; 
wildland urban interface AND fire 
paradox; wildland urban interface 
AND fire suppression; tourist AND 
accidental AND fire 
 
Pyrodiversity prescribed burn; 
pyrodiversity management; 
conservation AND fire; 
conservation AND prescribed fire; 
biodiversity conservation AND 
prescribed fire  

Grazing AND fire management; 
prescribed grazing; prescribed 
grazing AND fire management 

Land abandonment AND fire; 
agricultural abandonment AND fire; 
land abandonment AND fuel load; 
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Appendix 3C: Variables recorded in DAFI   

Fire use contexts were recorded for all fire use, suppression and policy records. Fire use 

data were recorded as numeric values where directly reported & binned ranges where 

estimated from reported proxy variables. 

 

Data type Field Values 

Record information Study type One of: Academic, NGO, Government, Other 

 Data type 
One or combination of: Primary, remote 
sensing, secondary, literature review, other 

 Location 
Smallest given administrative unit comprising 
whole study area 

 Region or district 
Reported geographical which contains study 
location(s) 

 Country 
Country of interest, multi-country studies 
should be in separate case studies 

 Latitude Latitude in decimal degrees 

 Longitude Longitude in decimal degrees 

 Study area km2 

 Study date (start) Integer, years CE 

 Study date (end) Integer, years CE 
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Data type Field Values 

Land use Land tenure 
One of: Traditional, government-allocated, 
private, insecure, mixed.  

 

Pyne fire 
development stage 

One of: Pre-industrial, Transition, Industrial, 
Post-industrial 

 AFTs 
Up to four preliminary AFT types chosen from 
Pyne/Malek framework 

 

Stocking rate  
(head ha-1) Numeric value 

 Farm area (ha) 
Numeric value: what was the mean farm area 
in the study? 

 Yield (t ha-1) 
Numeric value for dominant commodity grown, 
note commodity under notes 

 Extractive forestry 
Was there extractive logging taking place in 
not-plantation forest? 

 

Biomass 
harvesting (m2 ha-1 
yr-1 or t ha-1 yr-1  ) 

Amount of timber harvested from primary and 
secondary forest 

 Forestry area (%) 

Numeric: refers to all forest landscapes that 
are actively managed for either timber, fruit or 
other NTFPs 

 Pasture area (%) Numeric 

 Cropland area (%) Numeric  

 

Secondary 
vegetation (%) 

Numeric: refers to all vegetation that is 
degraded through human activity, but not 
actively managed. For example, a secondary 
forest regrowing on a previous swidden plot.  

 

Natural 
ecosystems (%) Numeric 

  
Natural ecosystem 
conversion rate(%) 

What % of the existing natural ecosystems are 
being converted to cropland or pasture, or 
being destroyed and replaced with plantation 
forest? 
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Data type Field Values 

Fire use context 
(recorded for fire 
use, suppression 
and policy) Fire type 

One of: Human Deliberate, Human Accidental, 
Human Escaped, Lightning, Other Natural, 
Unknown 

 Fire intention 

21 options: check for existing categories before 
creation of a new one; can also be "ND" or 
"All" for all fire behaviours present in that case 
study 

 AFT Preliminary AFT from Pyne/Malek framework 

 

Intended land 
cover 

Which land cover was the fire intended to 
burn? One of: Cropland, pasture, secondary 
vegetation, plantation forest, forest, grassland, 
shrubland (mixed forest and grassland).  

 Actual land cover 

Actual land cover the fire burned - may be 
different from intended, if e.g., an agricultural 
fire spread into the surrounding forest 

  
Presence / 
Absence 

Is this record noting an instance of the 
presence of burning or the absence of it? One 
of: Presence, Absence 
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Data type Field Values 

Fire use  
Number of fires,  
land cover   

# km2 -1: How many fires of this kind occurred 
per sq km within the relevant land cover?  

 

Number of fires, 
study area  

# km2 -1: How many fires of this kind occurred 
per sq km of the study area?  

 

Intended fire size 
min, median, max, 
mean  

ha: what were the min, max and mean of the 
intended fire size for each ignition? 

 

Actual fire size min, 
max, mean  

ha: what were the actual reported min, max 
and mean fire size for each ignition? 

 

Intended burned 
area  

ha: How much area was intended to be burned 
for this fire type? 

 Actual burned area  
(ha): How much area was reported as burned 
for this fire type? 

 

Intended burned 
area  

%: How much of the intended land cover was 
intended to be burned for this fire type? 

 Actual burned area  
%: How much area was reported as burned for 
this fire type of the relevant land cover 

 

Intended burned 
area 

%: How much of the land surface was intended 
to be burned? 

 Actual burned area  %: How much of the land surface was burned? 

 Fire return period 
Years: How frequently was a given piece of 
land burned with this intention. 1 = every year 

 

Fire season  
start & end Month of the Julian calendar 

  Fire ignition pattern 

One of: One-off, Consistent, Seasonal back-
loaded, Seasonal front-loaded, Seasonal 
consistent  
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Data type Field Values 

Fire suppression Fire control (0-3) 

0: None 
1: Limited or adhoc 
2: Moderate or traditional 
3: Intensive or industrial 

 

Fire prevention  
(0-3) Ordinal scale as control 

  Fire extinction (0-3) Ordinal scale as control 

Fire policy 
Institutional agent 
type 

Usually national government; can also be 
regional/local government, NGO, other 
international organisation. 

 Incentives 
Did the fire policy involve economic incentives? 
One of: No, Yes (fire prevention) Yes (pro-fire) 

 Incentive rationale 
What was the purpose of the incentives? One 
of: Economic, Environmental, Health 

 Fire Restricted 

Did the fire policy involve restrictions on fire 
use? One of: Yes -spatial restriction, Yes - 
temporal restriction, , Yes - both spatial and 
temporal restriction, Yes (other), No. 

 

Restriction 
rationale 

What was the purpose of the restriction? One 
of: Economic, Environmental, Health  

 

Restriction 
Enforcement (1-5) 

1) none or limited, 2) partial; fine or civil action, 
3) partial prison or criminal action, 4) 
widespread; fine or civil action, 5) widespread 
prison or criminal action) 

 Fire banned 
Did the fire policy involve outright bans on fire 
use? One of: Yes, No  

 Ban rationale 
What was the purpose of the ban?  One of: 
Economic, Environmental, Health 

  
Ban Enforcement 
(1-5) Scale as with restriction 
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Appendix 3D: Categorisation of fire use purposes in WHAM! 

Long list of categories, and 7 simplified categories that captured 93% of instances of anthropogenic fire use in DAFI.  

Original category (n = 21) Simplified category (n = 7) Description 

Accessibility Other (N/A) 
Fire use to clear pathways through vegetation, typically in savannah landscapes. 
Used to facilitate land uses across pre-industrial land use systems 

Accidental Other (N/A) 
Anthropogenic fires started unintentionally, for example from cigarettes, exhaust 
fumes or faulty power cables 

Arson Arson 
Fire used to cause damage to persons or property; in some contexts, fire damage 
caused through negligence may also be considered arson 

Charcoal production Other (N/A) 
Fire used to burn wood for charcoal, principally important as a source of escaped 
fires 

Conservation Pyrome management 
Fires lit to conserve biodiversity by creating diverse stages of vegetational 
succession in a landscape 

Crop field preparation Crop field preparation Fire use in the context of shifting cultivation 

Crop residue burning Crop residue burning Fire used to remove agricultural residues, either pre or post harvest 

Cultural & Spiritual Other (N/A) 
Fire used for social or religious ceremonies; other fire uses may also take on a 
cultural or religious significance 

Domestic Other (N/A) Relevant for escaped fires 

Fishing Hunting and gathering Fires to facilitate fishing 

Forest clearance Vegetation clearance Fire used to clear forest land cover 

Forest management Other (N/A) 
Typically to promote / manipulate timber growth (does not include fuel load 
management, which is under pyrome management) 
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Original category (n = 21) Simplified category (n = 7) Description 

Harvesting of NTFP Hunting and gathering Fire to harvest non-timber forest products such as honey, fruit or mushrooms 

Harvesting of Timber Arson Fire was used for burning of forests to facilitate illicit salvage logging (n = 21) 

Hunting Hunting and gathering Fires to facilitate hunting of wild animals 

Land clearance Vegetation clearance Fires to clear non-forest vegetation types, typically savannas 

Pasture renewal Pasture management Fires to regenerate livestock forage, typically in managed pastures 

Pest management 
Pasture management /  
Other (NA) 

Pest management fires were most often used in the context of livestock (46%) - 
where fires for pest control and forage restoration were sometimes 
interchangeable. Therefore, this category was split between pasture 
management and ‘other’ where conducted by arable and forestry fire user types. 

Pyrome management Pyrome management 
Fires lit to manage the wider fire regime, for any purpose other than conservation 
- typically to prevent damage to persons or property from wildfires 

Rangeland management Pasture management 

Fires to regenerate livestock forage, typically on open rangeland; fire may also 
have served purpose to remove coverage for predators or prevent livestock from 
tripping on hidden holes in the ground 

Vegetation management 
Crop residue burning /  
Other (NA) 

Many instances were for sugar cane burning to facilitate harvest; this was 
grouped with crop residue burning (pre-burning) 
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Appendix 4A: Data processing  
This appendix covers processing of secondary data undertaken to support modelling and findings 

presented in Chapter 4 (Perkins et al., 2022). It covers rescaling, extrapolation, sampling and 

smoothing of secondary data sets. 

1. Data Processing 

1.1 Preparation of DAFI data 

Data in the Database of Anthropogenic Fire Impacts (Chapter 3) are the basis of the dependent 

variable in models presented. Perhaps the most substantial in data preparation was how many case 

study locations to allow for a single source. We chose to include a maximum of four covering the 

same anthropogenic fire regime from the same country. We could, for example, have only allowed 

one location per source.  

However, given the nature of our data, many of the papers reporting multiple case studies reported 

locations in contrasting land system states or regions: 50% of case studies that were included from 

papers with more than 3 case studies contained locations in multiple countries or regions (states or 

districts). Alternatively, a paper might sample, e.g., an agricultural region and a nearby conservation 

reserve: 27% of sources with more than 3 included case studies reported cases from more than one 

anthropogenic fire regime. Therefore, reducing the number of case studies (and therefore locations) 

per source to 1 would substantially reduce the information in our data. For this reason, we think the 

global mean value of 4 (rounded from 3.7) is a good threshold for locations per source.  

1.2 Rescaling of data 

The ultimate goal of the land-fire system distribution presented in Chapter 4 is to develop a model of 

human fire impacts that may be coupled with the JULES-INFERNO DGVM. JULES-INFERNO runs at a 

resolution of 1.875o x 1.25o. Therefore, all secondary data sets employed in our model were re-

scaled to this (coarse) resolution. This was done in R using the ‘raster’ package version 3.3.13 

(Hijmans 2020) using bilinear interpolation.  

1.3 Extrapolating data sets 

Data sets used came with a varying level of temporal coverage over the period of model runs (1990-

2015; see Chapter 4, Table 4.1 for a complete list). Missing years in data sets were handled in two 

ways. Data which contained direct measurements (for example population density) which did not 

have full coverage across the study period were extrapolated using a simple last observation carried 

forward or first observation carried backwards approach. By contrast, market access data were not 

directly measured but were themselves compiled from calculations based on secondary data. 

Therefore, as these were only available for one study year, they were extrapolated across years 

study years using a generalised linear model. 
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Figure 4A.1: Overview of generalised linear model used to predict global road density: A) 

Predictions against original data set & B) model coefficients. The model achieves good 

predictive accuracy (pseudo r2 = 0.71), but tends to under-predict the variance in the 

response variable (standard deviation: 604.8, data vs 306.3, modelled). The glm used a 

gaussian response variable with a logarithmic link. The original data were for 2015 (Weijer et 

al., 2018).  

  

Variable Coefficient 

Intercept 0.7709 

Log(Population) 0.1013 

GDP -1.689 e-06 

HDI 0.6874 
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2. Extrapolation of market access data 
Market access data (Verburg et al., 2011), (which describes the travel time to the nearest city or port 

on a 0-1 scale), were found to be valuable as a driver of the distribution of land-fire systems (LFS). 

However, they were only available for the year 2000. Furthermore, as the original data were 

themselves derived from secondary data - the location of ports and cities and road density – it should 

be possible to extrapolate the measure across all study years. This was done using a generalised 

linear model (GLM) using the following steps.  

Given the importance of travel times in calculating the accessibility of the nearest city or port from a 

given location, the first step was to find predictor variables to capture this aspect of market access. A 

number of methods were tried, including use of the ‘accessibility’ and friction layers for 2015 

developed by the Global Malaria Project (Weiss et al., 2018). This was projected across 1990-2015 by 

modelling the friction layer as a generalised linear model, and using this extrapolated temporal 

variable to calculate the least cost path from each grid cell to the nearest city or port. However, 

perhaps due to the complexity of this calculation, the extrapolated accessibility and friction layers 

were found not to be predictive of the 2000 market access data. The eventual adopted approach, 

therefore, was to use the global road density data set of Meijer et al., (2018) as a proxy for travel 

times across a given grid cell. These road density data were extrapolated across the study period 

using a generalised linear model, with GDP, HDI and the natural logarithm of population density as 

predictor variables (Figure 4A.1). The underlying model achieved an r2 of 0.71.  

Along with this extrapolated road density layer, the glm of market access also used the logarithm of 

population density and the un-extrapolated accessibility layer of Weiss et al., (2018). The resulting 

model achieved a pseudo r2 of 0.73 (Figure 4A.2). Whilst the use of the static accessibility layer of 

Weiss added bias to the model, the glm still achieved good predictive accuracy. Ultimately, the use of 

extrapolated market access data is justified in its empirical performance: the AUC of classification 

trees that used the market access or related market influence variables increased by an average of 

0.01 when the extrapolated data was used. Furthermore, for the planned global model of human 

impacts on fire to be run into the future data will need to be able to be projected forwards. Our work 

suggests this is feasible for market access, which underpins its utility as a predictor variable of human 

fire use. 
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Figure 4A.2: Generalised linear model used to predict global market access: A) Predictions 

against original data set & B) model coefficients. The model achieves good predictive 

accuracy (pseudo r2 = 0.73), but underestimates market access at low to moderate levels 

(particularly 0.25-0.5). The glm used a gaussian response variable with a logarithmic link. 

The original data were for 2000 (Verburg et al., 2011).  

  

Variable Coefficient 

Intercept -3.396 

Population 7.998e-05 

Log(Road density) +1 0.3383 

Accessibility  -4.809e-03 
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3. Calculation of variable convolutions and other derivatives data sets 
Three derivative predictor variables were calculated based on the original secondary data sets 

employed in the study. These were: 

 

- HDI*log(GDP) 

During the construction of classification tree models, GDP and HDI were found consistently to be 

chosen as the first split in a tree structure in approximately 50% of a bootstrapped ensemble. It was 

found that the product of HDI and the natural logarithm of GDP was chosen preferentially in place of 

GDP and HDI in the majority of such instances. This may be because HDI captures information most 

effectively at low GDP, where economic data may be distorted by a few vary large salaries, whilst 

GDP is more effective at capturing information in more developed contexts.  

 

- Terrain Roughness Index 

The Terrain Roughness Index (TRI; Riley et al., 1999) is a measure of the variance in topography. It 

was calculated using using the spatialEco package in R version 1.3.7 (Evans 2020).  

 

- Wealthy flat index  

Similar to the case of GDP and HDI, some LFS classification trees were split approximately evenly 

between (low or flat) topography and (high) GDP as the first split measure – primarily for intensive 

land uses. Therefore, a combined variable was created to capture both these concerns, calculated as: 

GDP x 1/TRI. A high TRI represents very rugged terrain, so this index is highest in areas of high GDP 

and flat terrain. We term this the ‘Wealthy flat index’.  

 

4. Processing of HANPP data 
Data for the human appropriation of net primary productivity (Haberl et al., 2007) were available at 5 

arcminute resolution. Therefore, these were resampled to the resolution of JULES-INFERNO, as 

described above.  
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5. Use of data for modelling 

 

5.1 Data sampling 

In order to train the classification tree models that drive our LFS distribution, we sampled the 

secondary data sets at the locations of case studies in DAFI. This was done using the central point of 

a DAFI case study area as the sampling location. The year sampled was the mean of the study period, 

rounding upwards – so a study beginning in 2002 and ending in 2005 would be allocated the values 

from secondary data sets for 2004. 

 

5.2 Data smoothing 

During model runs, it was found that interannual variability in biophysical variables caused some cells 

on the boundary between LFS to oscillate between two states. For example, between intensive 

farming and small-holder cropping based on fluctuations of reference evapotranspiration. Therefore, 

a 10-year average was calculated from the data, comprised of the model year (t) and the previous 9 

model years. This removed the oscillation issue. The impact of imposing a moving window on socio-

economic variables was also explored, but not found to change model outputs significantly.  
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Appendix 4F: Reference multinomial model 
This appendix covers the construction of a multinomial regression model. This ‘null’ or reference 

model was used as a benchmark for predictive performance of the bootstrapped classification tree 

approach outlined in the main text (Perkins et al., 2022).  

 

1. Preparation of data 
Data used were the same as for the classification trees. They were split by land systems and 

weighted in the same way. All available data points for each land system were used to train the 

models. Similarly to the classification trees, data were resampled such that all states of the target 

variable occurred an equal number of times in the training data. In other words, each AFR had equal 

frequency in the dependent variable for each land use system. 

 

2. Selection of variables 
Models were fit in R using the nnet package of Venables and Ripley (2002), version 7.3-17. The 

default log-linear link function was used throughout. Initially, all variables available were trialled, 

however this led to likely symptoms of collinearity – such as large negative and positive coefficients 

for correlated variables. Furthermore, to be a fair comparison – parsimonious multinomial models 

were needed. This was because a premium was placed on classification trees being simple and 

grounded in process – more complex trees could have achieved much higher AUC (classification 

accuracy), but at the expense of producing high variance when projected across global rasters.  

Therefore, a simple model of HDI & market access was deployed. These two variables performed 

most strongly amongst all available predictors and adding a third predictor made little difference to 

predictive accuracy. Two variables was also the same number as in 18/19 classification trees used, 

ensuring a broad like-for-like comparison. 

 

3. Code availability 
Code & data to run reference multinomial models are made available online (Perkins and Millington 

2022).  
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Appendix 6A: HDI and market access under the shared socioeconomic pathways 
This appendix provides an overview of the new projections of market access and the human 

development index constructed to enable future runs of WHAM! for the Shared socioeconomic 

pathways. Global timeseries (Figure 6A.1) and maps from 2050 and 2100 are provided for each of 

the two indicators (Figures 6A.2-6A.5).  

Figure 6A.1: Time series of A) Human Development Index (HDI) and B) market access 

under the shared socioeconomic pathways.
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Figure 6A.2: The human development index in 2050 across the shared socioeconomic pathways. 
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Figure 6A.3: The human development index in 2100 across the shared socioeconomic pathways. 

 



303 
 

 

Figure 6A.4: Market access in 2050 across the shared socioeconomic pathways. 
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Figure 6A.5: Market access in 2100 across the shared socioeconomic pathways. 

 


