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An Adapted Generalised Linear Modelling
(GLM) Method to Predict the Daily Probability

of Wildfire Occurrence

GLMs are widely used for modelling wildfire properties. We

resolve three key issues with the method

(predictor

selection, appropriate predictor range, compression) to
create a daily fire occurrence model for the contiguous US.
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Wederburn,
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transform was
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Figure 1: overview of the model for fire occurrence and its

application as an ensemble

1. A forwards-backwards algorithm was used to identify
which predictors to use, by adding new predictors then
testing if existing ones should be switched out.

Some predictors are primarily influential in a certain
range, so predictors were truncated to optimise model
performance.

A power-law transform was applied to the final output to
reduce compression.
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Figure 2: The rate at which predictors were selected for the final
model. The top three predictors are virtually always selected. The
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graph only show predictors selected in more than 1% of 2000
runs.
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Figure 3: top, mean of daily modelled probability of wildfire
occurrence. Bottom, mean observed rate of wildfire

occurrence. Study period of 2002 -2018

The geospatial average of modelled daily fire occurrence
probability is in good agreement with the observational record.
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Figure 4: the total modelled and observed fire occurrences in
the contiguous United States from 2002-2018.

The total annual number of wildfire occurrences simulated by

The Seasonal Cycle

Seasonal Phase

Seasonal Concentration

Observation

Figure 5 (above): comparative plots of the modelled and
observed seasonal concentration and phase (defined below).

Good correspondence is broadly shown with the exception of
the NW coast.

SEASONAL PHASE: SEASONAL CONCENTRATION:
The extent to which fire
occurrence is clustered Iin the
year, where 0 indicates that there
are the same number of fires
each month and 1 indicates fires
occur in a single month.

The average centre of
the fire season. Most
meaningful when the
season Is characterised
by a single, symmetrical
peak.

Table 1: the minimum, mean and maximum of key model
benchmarks. The geospatial, seasonal and interannual
benchmarks are those used in FireMIP (Kelley et al., 2013). AUC
IS the area under the receiver operating curve — a metric for the
ranking accuracy of the model

AUC

NME Interannual

NME Seasonal Concentration
NME Geospatial

Seasonal MPD
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Figure 6 (right): the modelled
(red) and observed (black)
seasonal cycles for wildfire

occurrence in three

characteristic regions.

Exhibiting the central summer-

peak associated with the arid

West; the bimodal cycle
associated with regions
having wet or humid
summers; and, the spring
peak and long tail observed in
the North East.

the model corresponds well to observed high and low fire

years.
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Figure 7: the t-values for each of predictors in the best
performing model (defined as the model with the highest AUC

of the pareto-superior set).




