
Fire rate-of-spread model inversion: what can be 

inferred from remote sensing observations of fire 

behaviour?

Understanding the drivers of wildfires is crucial to evaluating fire's impact on natural processes and their feedback on human systems. Due to the difficulty of directly observing fires in the wild, our

current knowledge of wildfire behaviour heavily relies on lab experiments and open-controlled fires, which are the main source for our models and assumptions. Thus, there are still several gaps

on how spot samples upscale to ecosystems, how different fuel types with different moisture contents should be represented in the models or how fire responds to the intrinsic structural

complexity of ecosystems. Some of this information is currently encoded in fuel models, which are based on vegetation types and used as prescribed inputs in our models. However, they are a

documented source of uncertainties and inaccuracies when applied beyond the spatial domain from which they were originally formulated. Fire behaviour observed from remote sensing could

provide more general insights on the emergent response of fire to this complexity. In this work, by inverting Rothermel’s model for fire rate of spread (ROS), we show how field observations of fuel

load, fuel moisture and environmental variables relate to the remotely sensed ROS and fire radiative power (FRP). We used fuel moisture from 1234 sites provided by the National Fuel Moisture

Database, fuel load measurements from 9000 sites provided by the Public LANDFIRE Reference Database, fire ROS from the Fire Atlas and FRP from the MCD14ML product, covering a

timespan from 2003 to 2016 over the US. Preliminary results show only partial agreement between the components of the ROS equations calculated from observations and estimated by model

inversion.
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• Our current approach to model wildfire behaviour heavily

relies on complex semi-empirical models from lab

experiments and open-controlled fires.

• How do experiments/spot observations upscale to

ecosystems?

• How does fire respond to the intrinsic structural

complexity of ecosystems in nature?

• Are current fuel models properly representing the

diversity of fuel type/moisture-content complexes?

• Is an emergent and simpler empirical parametrization

more robust and reliable than a complex semi-empirical
formulations of ROS?

Sampling:
Burned areas over N. America (in red) for pre and active-fire retrievals.

Datasets:

Fire behaviour: Fire Atlas (Andela et al., 2019)

Fire radiative power (FRP): MODIS MCD14ML Giglio 2016 (Giglio et al., 2016)

Daily reflectance: MODIS MCD43A4 Schaaf 2002 (Schaaf et al., 2002)

Vegetation C-band backscattering: Sentinel 1 (Copernicus Sentinel data 2023)

Daily high res Environmental data from GRIDMET (Abatzoglou, 2013)

Field observations of fuel load and fuel moisture: National Fuel Moisture

Database and Public LANDFIRE database

Metrics:

Vegetation signal NIRv (Badgley et al., 2017): 𝑁𝐼𝑅𝑣 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅−𝑅𝐸𝐷
∗ 𝑁𝐼𝑅

Water content signal MSI (Hunt & Rock, 1989): 𝑀𝑆𝐼 =
𝜌1600

𝜌820

Heath source Hsrc (Peterson et al., 2013): 𝐻𝑠𝑟𝑐 =
𝐹𝑅𝑃

𝐴𝑝 𝜃,𝑠𝑎𝑚𝑝𝑙𝑒

Heat sink Hsnk (Andrews, 2018): 𝐻𝑠𝑛𝑘 =
𝐻𝑠𝑟𝑐

𝑅𝑂𝑆

Pre-fire reflectance vs. potential ROS Pre-fire reflectance vs. vegetation heat sink

heat source

heat sink

3.1. Potential ROS: Emergent spectral patterns

3.2. Signals from fuel load and fuel moisture shape the potential ROS

Vegetation and water signals pre and post-fire Vegetation and water Pre-fire signals shaping Hsnk

Pre-fire C-band backscatter vs. potential ROS Potential ROS and vegetation heat sink

4. Conclusions
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Model performance with lab observations Model performance with 
large spatial datasets
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Observed ROS

Simulated ROS

• It is possible to bypass the empirical estimations of fuel load and fuel moisture which use RS and directly use these signals to calculate a potential 

ROS as a fraction of windspeed.

• The pre-fire spectral patterns suggest that ROS up to 20% of 𝑢 happens only in very narrow regions of the wavelength-reflectance space.

• The patterns of 𝑅𝑂𝑆/𝑢 responded strongly to Hsnk.

• The vegetation-water content space shaped a predictable gradient of Hsnk.

• The signals from the radar suggest that at a similar low level of fuel moisture (backscatter from VV polarization) high 𝑅𝑂𝑆/𝑢 could happen at either of 

both extremes of the fuel load scale (backscatter from VH polarization), creating an “island” of low 𝑅𝑂𝑆/𝑢 in the middle regions of the backscattering.
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