

LEVERHULME

Centre for **Wildfires**, **Environment** and **Society** Imperial College London

Reading

Statistical models as a tool to explore the relative importance of climate and CO_2 in driving large-scale changes in wildfire regimes

Olivia Haas, Iain Colin Prentice, Sandy P. Harrison

o.haas20@imperial.ac.uk

www.centreforwildfires.org

LEVERHULME TRUST _____

Atmospheric controls of wildfires

CO

Statistical modelling approach

Explicitly account for physiological effect of CO₂ on vegetation

Observe relative importance of different predictors

Apply to counter-factual experiments to explore sensitivity

Step 1: Modern statistical model building

Satellite observations

3 generalized linear models

GFEDv4 (Randerson et al 2018) MCD14ML (Giglio et al 2006) Globfire (Artés et al., 2019) GFA (Andela et al., 2019) Burnt Area (BA)

Fire Size (FS)

Fire intensity (FI)

Step 2: experimental set-up

CO₂ only

Baseline climate Scenario CO₂

Climate only

Scenario climate Baseline CO₂

Baseline Baseline climate Baseline CO₂

Sensitivity

Scenario Scenario climate Scenario CO₂

Step 3: Out-of-sample experiments

The past

Last Glacial Maximum

~ 21, 000 years ago

vegetationproductivity &forest cover

biomassburning globally

Modern and LGM wildfire regimes

ΒA

MANNAMASON

CO₂ vs climate controls at the LGM

Figure 2. Boxplots showing relative importance of key predictor (GPP: gross primary production, grass: grass cover, VPD: vapour pressure deficit, wind: wind speed) in driving the anomaly between the MOD 395 ppm and LGM 190 ppm experiment

Sensitivity analysis

CO₂ sensitivity

BA LGM-MOD anomalies

Comparison with sedimentary charcoal records

 CO_2 only

climate only

Step 3: Out-of-sample experiments The future

Future conditions

2100 RCP 2.6 & RCP 6.0, SPP2

~ 420-650 ppm

A lot of uncertainty

Modern and RCP6.0 wildfire regimes

BA

CO₂ vs climate controls under RCP 6.0

Similar sensitivity to LGM

Human sensitivity?

Useful for global fire model development

GLM analysis as benchmarking tool
Different fire properties → different responses
Quantification of CO₂ effect → essential for accurate modelling