

LEVERHULME

Centre for **Wildfires**, **Environment** and **Society** Imperial College London

Reading

Regional uncertainties in global human-fire interactions

Ol Perkins (KCL) James Millington & Tamsin Edwards (Supervisors)

Collaborators:

Matt Kasoar & Apostolos Voulgarakis (modelling) Cathy Smith & Jay Mistry (literature meta-analysis) Sarah Matej, Karl-Heinz Erb (model evaluation) LandSyMM consortium (human capital SSP projections) Joanne Hall (Crop fire evaluation & projections) WWW.Centreforwildfires.org

@centrewildfires

LEVERHULME TRUST _____

Contents

➤ We have built WHAM! – the Wildfire Human Agency Model.

- Synthesis of local case studies
- Global outputs

We have (loosely) coupled WHAM! with the JULES-INFERNO dynamic global vegetation model

- Improved quantitative benchmarks for JULES-INFERNO model
- Improved understanding of underlying processes

Regional uncertainties in WHAM-INFERNO

- Crop residue burning in Northern India
- Sub-Saharan Africa: livestock grazing & socio-ecological change

Our starting point: results from FIREMIP

 The Fire Model Intercomparison Project found anthropogenic impacts on fire were the central causes of disagreement amongst models, and between models and observations.

From Teckentrup *et al.* (2019) - Counterfactual scenarios assessing FIREMIP model ensemble sensitivity to atmospheric CO₂, human population and land cover (INFERNO in Orange)

Empirical parameterisation: DAFI

Meta-analysis of human fire literature, spanning 1809 case studies in 504 papers

Fire Use	Median Size (ha)	Mean Burned Area (% LS)	Escaped (%) 0.05
Crop Field Preparation	0.7	14.2	
Crop Residue Burning	3.6	36.3	0.01
Pasture Management	10.7	32.1	4.97
Hunter- Gatherer	1.3	14.3	2.90
Pyrome Management	40.8	14.0	0.30
Vegetation Clearing	4.7	2.5	3.23
Arson	N/A	N/A	N/A

Millington et al., 2022

Get the data! - doi.org/10.3390/fire5040087

How does WHAM! work?

Millington et al., 2021, EGU

WHAM!: Managed fire outputs

- Evaluation of full model outputs require coupling with INFERNO fire model
- Here we compare crop fire outputs with GFED5 crop fires: r=0.70

With Hall, Kasoar (In prep)

What's driving the error in India?

Crop residue burning (% area occupied) for: a) Subsistence-oriented smallholder

b) Market-oriented smallholder

- Regression to mean in WHAM?
- Seasonality issues with remote sensing?

> A bit of both?

Underlying DAFI data: from Millington et al., 2022

A coupled model: WHAM-INFERNO

WHAM-INFERNO combined model

With Kasoar & Voulgarakis (in prep)

WHAM-INFERNO improves performance

- > 10k runs sampling uncertain parameter spaces of WHAM-INFERNO & INFERNO (offline)
- WHAM-INFERNO (r=0.734, empirical r=0.791) significantly improves (Ztest; p<2.2e⁻¹⁶) INFERNO (r = 0.584)

Managed & unmanaged fires

Contributions of managed fire, and its temporal trend varies hugely by continent

Declining fire in SSA (2001-2014): capturing fragmentation effects?

Drivers of unmanaged fires: WHAM_JULES-INFERNO

Right: Dependent variables of unmanaged fire (2001=1)

Below: Correlation (r) of WHAM-INFERNO unmanaged fire with its dependent variables

Continent	Flammability	Number of fires	Road density	Suppression
Africa	0.80	0.18	0.12	0.13
Asia	-0.28	-0.17	-0.95	-0.91
South America	0.50	0.70	-0.68	-0.68

Conclusions

- Present methods based on population density are an insufficient means to represent human-fire interactions in global models
- Progress made here can form the basis of new approaches but:
- Disagreements between WHAM & GFED5 crop fires in Northern India require additional fieldwork to understand source of error
- Attempts to capture fragmentation effects in sub-Saharan Africa have mixed success: meso-scale modelling may be important

... A closing thought

- There are very real ethical questions regarding synthesis of global data on human-fire interactions
- But there are also ethical consequences to *not* synthesising such data
- To the extent that global scientific models inform technopolitical discourses around environmental change: livelihood fire users are currently excluded

WHAM! land use engine

Empirically-based distribution function: 1 tree per AFT, outputs for AFTs within each land system compared

Perkins, O., Matej, S., Erb, K.-H., & Millington, J. (2022). doi:10.18174/sesmo.18130

With Hall, Kasoar (In prep)

Drivers of change in agricultural fire

• Pasture fires decrease exponentially with increased economic growth, as land use intensifies

